मराठी

Limx→1(x-1)(2x-3)2x2+x-3 is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

`lim_(x -> 1) ((sqrt(x) - 1)(2x - 3))/(2x^2 + x - 3)` is ______.

पर्याय

  • `1/10`

  • `(-1)/10`

  • 1

  • None of these

MCQ
रिकाम्या जागा भरा

उत्तर

`lim_(x -> 1) ((sqrt(x) - 1)(2x - 3))/(2x^2 + x - 3)` is `(-1)/10`.

Explanation:

Given `lim_(x -> 1) ((sqrt(x) - 1)(2x - 3))/(2x^2 + 3x - 2x - 3)`

= `lim_(x -> 1) ((sqrt(x) - 1)(2x - 3))/(x(2x + 3) - 1(2x + 3))`

= `lim_(x -> 1)((sqrt(x) - 1)(2x - 3))/((x - 1)(2x + 3))`

= `lim_(x -> 1) ((sqrt(x) - 1)(sqrt(x) + 1)(2x - 3))/((x - 1)(sqrt(x) + 1)(2x + 3))`

= `lim_(x + 1) ((x - 1)(2x - 3))/((x - 1)(sqrt(x) + 1)(2x + 3))`

= `lim_(x -> 1) (2x - 3)/((sqrt(x) + 1)(2x + 3))`

Taking limit we have

= `(2(1) - 3)/((sqrt(1) + 1)(2 xx 1 + 3))`

= `(-1)/(2 xx 5)`

= `(-1)/10`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Limits and Derivatives - Exercise [पृष्ठ २४३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 13 Limits and Derivatives
Exercise | Q 62 | पृष्ठ २४३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate the following limit.

`lim_(x -> 0) (cos 2x -1)/(cos x - 1)`


Evaluate the following limit :

`lim_(theta -> 0) [(sin("m"theta))/(tan("n"theta))]`


Evaluate the following limit :

`lim_(x -> 0) [(x*tanx)/(1 - cosx)]`


Evaluate the following limit :

`lim_(x -> 0)[(1 - cos("n"x))/(1 - cos("m"x))]`


Evaluate the following limit :

`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`


Evaluate the following :

`lim_(x -> "a") [(sinx - sin"a")/(x - "a")]`


Evaluate the following :

`lim_(x -> "a") [(x cos "a" - "a" cos x)/(x - "a")]`


`lim_{x→0}((3^x - 3^xcosx + cosx - 1)/(x^3))` is equal to ______ 


Find the positive integer n so that `lim_(x -> 3) (x^n - 3^n)/(x - 3)` = 108.


`lim_(x -> 0) sinx/(x(1 + cos x))` is equal to ______.


Evaluate: `lim_(x -> 0) ((x + 2)^(1/3) - 2^(1/3))/x`


Evaluate: `lim_(x -> sqrt(2)) (x^4 - 4)/(x^2 + 3sqrt(2x) - 8)`


Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`


Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`


Evaluate: `lim_(x -> pi/6) (cot^2 x - 3)/("cosec"  x - 2)`


Evaluate: `lim_(x -> 0) (sin x - 2 sin 3x + sin 5x)/x`


`lim_(y -> 0) ((x + y) sec(x + y) - x sec x)/y`


`lim_(x -> 0) ((sin(alpha + beta) x + sin(alpha - beta)x + sin 2alpha x))/(cos 2betax - cos 2alphax) * x`


Show that `lim_(x -> 4) |x - 4|/(x - 4)` does not exists


`lim_(x -> 0) ((1 + x)^n - 1)/x` is equal to ______.


`lim_(x -> 0) (1 - cos 4theta)/(1 - cos 6theta)` is ______.


If `f(x) = {{:(x^2 - 1",", 0 < x < 2),(2x + 3",", 2 ≤ x < 3):}`, the quadratic equation whose roots are `lim_(x -> 2^-) f(x)` and `lim_(x -> 2^+) f(x)` is ______. 


`lim_(x -> 0) (tan 2x - x)/(3x - sin x)` is equal to ______.


If L = `lim_(x→∞)(x^2sin  1/x - x)/(1 - |x|)`, then value of L is ______.


The value of `lim_(x rightarrow 0) (4^x - 1)^3/(sin  x^2/4 log(1 + 3x))`, is ______.


`lim_(x rightarrow ∞) sum_(x = 1)^20 cos^(2n) (x - 10)` is equal to ______.


`lim_(x rightarrow π/2) ([1 - tan (x/2)] (1 - sin x))/([1 + tan (x/2)] (π - 2x)^3` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×