मराठी

Evaluate: limx→0(x+2)13-213x - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: `lim_(x -> 0) ((x + 2)^(1/3) - 2^(1/3))/x`

बेरीज

उत्तर

Given that `lim_(x -> 0) ((x + 2)^(1/3) - 2^(1/3))/x`

Put x + 2 = y

⇒ x = y – 2

= `lim_(y - 2 -> 0) (y^(1/3) - 2^(1/3))/(y - 2)`

= `lim_(y -> 2) (y^(1/3) - 2^(1/3))/(y  - 2)`

= `1/3 * (2)^(1/3 - 1)`

= `1/3 * 2^((-2)/3)`   ......`["Using"  lim_(x -> a) (x^n - a^n)/(x - a) = n * a^(n - 1)]`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Limits and Derivatives - Exercise [पृष्ठ २३९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 13 Limits and Derivatives
Exercise | Q 4 | पृष्ठ २३९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate the following limit.

`lim_(x -> pi) (sin(pi - x))/(pi (pi - x))`


Evaluate the following limit.

`lim_(x -> 0) (cosec x -  cot x)`


Evaluate the following limit.

`lim_(x -> (pi)/2) (tan 2x)/(x - pi/2)`


Evaluate the following limit :

`lim_(x -> 0) [(x*tanx)/(1 - cosx)]`


Select the correct answer from the given alternatives.

`lim_(x -> 0) ((5sinx - xcosx)/(2tanx - 3x^2))` =


Select the correct answer from the given alternatives.

`lim_(x -> pi/2) [(3cos x + cos 3x)/(2x - pi)^3]` =


Evaluate the following :

`lim_(x -> 0)[(secx^2 - 1)/x^4]`


Evaluate the following :

`lim_(x -> "a") [(sinx - sin"a")/(x - "a")]`


Evaluate the following :

`lim_(x -> pi/4) [(sinx - cosx)^2/(sqrt(2) - sinx - cosx)]`


`lim_{x→0}((3^x - 3^xcosx + cosx - 1)/(x^3))` is equal to ______ 


`lim_{x→-5} (sin^-1(x + 5))/(x^2 + 5x)` is equal to ______ 


Evaluate `lim_(x -> 2) 1/(x - 2) - (2(2x - 3))/(x^3 - 3x^2 + 2x)`


Evaluate `lim_(x -> pi/2) (secx - tanx)`


Evaluate `lim_(x -> pi/6) (2sin^2x + sin x - 1)/(2sin^2 x - 3sin x + 1)`


Evaluate `lim_(x -> 0) (tanx - sinx)/(sin^3x)`


`lim_(x -> pi/2) (1 - sin x)/cosx` is equal to ______.


`lim_(x -> 0) |x|/x` is equal to ______.


Evaluate: `lim_(x -> 0) (sqrt(1 + x^3) - sqrt(1 - x^3))/x^2`


Evaluate: `lim_(x -> 3) (x^3 + 27)/(x^5 + 243)`


Evaluate: `lim_(x -> 0) (2 sin x - sin 2x)/x^3`


cos (x2 + 1)


`lim_(x -> pi) (1 - sin  x/2)/(cos  x/2 (cos  x/4 - sin  x/4))`


`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is ______.


`lim_(x -> 0) sinx/(sqrt(x + 1) - sqrt(1 - x)` is ______.


`lim_(x -> pi/4) (sec^2x - 2)/(tan x - 1)` is equal to ______.


`lim_(x -> 0) (tan 2x - x)/(3x - sin x)` is equal to ______.


`lim_(x -> 0) (sin mx cot  x/sqrt(3))` = 2, then m = ______. 


If L = `lim_(x→∞)(x^2sin  1/x - x)/(1 - |x|)`, then value of L is ______.


If `lim_(n→∞)sum_(k = 2)^ncos^-1(1 + sqrt((k - 1)(k + 2)(k + 1)k)/(k(k + 1))) = π/λ`, then the value of λ is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×