Advertisements
Advertisements
प्रश्न
Evaluate `lim_(x -> pi/2) (secx - tanx)`
उत्तर
Put `y = pi/2 - x`.
Then y → 0 as x → `pi/2`.
Thereofre `lim_(x -> pi/2) (secx - tanx)`
= `lim_(y -> 0) [sec(pi/2 - y) - tan(pi/2 - y)]`
= `lim_(y -> 0) 1/siny = cosy/siny`
= `lim_(y -> 0) (1 - cosy)/siny`
= `lim_(y -> 0) (2sin^2 y/2)/(2sin y/2 cos y/2)`
Since, `sin^2 y/2 = (1 - cosy)/2`
sin y = `2sin y/2 cos y/2`
= `lim_(y/2 _> 0) tan y/2` = 0
APPEARS IN
संबंधित प्रश्न
Evaluate the following limit.
`lim_(x ->0) cos x/(pi - x)`
Evaluate the following limit.
`lim_(x -> 0) (ax + xcos x)/(b sin x)`
Evaluate the following limit.
`lim_(x -> (pi)/2) (tan 2x)/(x - pi/2)`
Evaluate the following limit :
`lim_(x -> pi/6) [(2 - "cosec"x)/(cot^2x - 3)]`
Evaluate the following limit :
`lim_(x -> pi/4) [(cosx - sinx)/(cos2x)]`
Evaluate the following limit :
`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`
Evaluate the following limit :
`lim_(x -> pi/6) [(2sin^2x + sinx - 1)/(2sin^2x - 3sinx + 1)]`
Evaluate the following :
`lim_(x -> 0) [(x(6^x - 3^x))/(cos (6x) - cos (4x))]`
`lim_{x→0}((3^x - 3^xcosx + cosx - 1)/(x^3))` is equal to ______
`lim_{x→-5} (sin^-1(x + 5))/(x^2 + 5x)` is equal to ______
Evaluate `lim_(x -> 0) (sqrt(2 + x) - sqrt(2))/x`
Evaluate `lim_(x -> 0) (sin(2 + x) - sin(2 - x))/x`
Evaluate `lim_(x -> 0) (cos ax - cos bx)/(cos cx - 1)`
Find the derivative of f(x) = `sqrt(sinx)`, by first principle.
If f(x) = x sinx, then f" `pi/2` is equal to ______.
Evaluate: `lim_(x -> 1) (x^4 - sqrt(x))/(sqrt(x) - 1)`
Evaluate: `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)`
Evaluate: `lim_(x -> 1/2) (8x - 3)/(2x - 1) - (4x^2 + 1)/(4x^2 - 1)`
Evaluate: `lim_(x -> 0) (2 sin x - sin 2x)/x^3`
Evaluate: `lim_(x -> pi/3) (sqrt(1 - cos 6x))/(sqrt(2)(pi/3 - x))`
Evaluate: `lim_(x -> pi/4) (sin x - cosx)/(x - pi/4)`
Evaluate: `lim_(x -> 0) (sqrt(2) - sqrt(1 + cos x))/(sin^2x)`
Evaluate: `lim_(x -> 0) (sin x - 2 sin 3x + sin 5x)/x`
`lim_(x -> pi) (1 - sin x/2)/(cos x/2 (cos x/4 - sin x/4))`
`lim_(x -> 0) ((1 + x)^n - 1)/x` is equal to ______.
`lim_(x -> 0) (sin mx cot x/sqrt(3))` = 2, then m = ______.
`lim_(x -> 3^+) x/([x])` = ______.
If `lim_(n→∞)sum_(k = 2)^ncos^-1(1 + sqrt((k - 1)(k + 2)(k + 1)k)/(k(k + 1))) = π/λ`, then the value of λ is ______.
`lim_(x rightarrow ∞) sum_(x = 1)^20 cos^(2n) (x - 10)` is equal to ______.