English

Evaluate limx→π2(secx-tanx) - Mathematics

Advertisements
Advertisements

Question

Evaluate `lim_(x -> pi/2) (secx - tanx)`

Sum

Solution

Put `y = pi/2 - x`.

Then y → 0 as x → `pi/2`.

Thereofre `lim_(x -> pi/2) (secx - tanx)`

= `lim_(y -> 0) [sec(pi/2 - y) - tan(pi/2 - y)]`

= `lim_(y -> 0) 1/siny = cosy/siny`

= `lim_(y -> 0) (1 - cosy)/siny`

= `lim_(y -> 0) (2sin^2  y/2)/(2sin  y/2 cos  y/2)`

Since, `sin^2  y/2 = (1 - cosy)/2`

sin y = `2sin  y/2 cos  y/2`

= `lim_(y/2 _> 0) tan  y/2` = 0

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Solved Examples [Page 228]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Solved Examples | Q 4 | Page 228

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate the following limit.

`lim_(x -> 0) (cos 2x -1)/(cos x - 1)`


Evaluate the following limit.

`lim_(x -> 0) (sin ax + bx)/(ax + sin bx) a, b, a+ b != 0`


Evaluate the following limit.

`lim_(x -> (pi)/2) (tan 2x)/(x - pi/2)`


Evaluate the following limit :

`lim_(x -> pi/6) [(2 - "cosec"x)/(cot^2x - 3)]`


Evaluate the following limit :

`lim_(x -> pi/6) [(2sin^2x + sinx - 1)/(2sin^2x - 3sinx + 1)]`


Select the correct answer from the given alternatives.

`lim_(x → π/3) ((tan^2x - 3)/(sec^3x - 8))` =


Evaluate the following :

`lim_(x -> "a") [(sinx - sin"a")/(x - "a")]`


Evaluate `lim_(x -> 0)  (sin(2 + x) - sin(2 - x))/x`


Evaluate `lim_(x -> pi/6) (2sin^2x + sin x - 1)/(2sin^2 x - 3sin x + 1)`


Evaluate `lim_(x -> 0) (tanx - sinx)/(sin^3x)`


`lim_(x -> 1) [x - 1]`, where [.] is greatest integer function, is equal to ______.


If f(x) = x sinx, then f" `pi/2` is equal to ______.


Evaluate: `lim_(x -> 1/2) (4x^2 - 1)/(2x  - 1)`


Evaluate: `lim_(x -> 0) ((x + 2)^(1/3) - 2^(1/3))/x`


Evaluate: `lim_(x -> 0) (sqrt(1 + x^3) - sqrt(1 - x^3))/x^2`


Evaluate: `lim_(x -> 0) (2 sin x - sin 2x)/x^3`


Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`


Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`


Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`


Evaluate: `lim_(x -> pi/6) (cot^2 x - 3)/("cosec"  x - 2)`


Evaluate: `lim_(x -> 0) (sin x - 2 sin 3x + sin 5x)/x`


cos (x2 + 1)


`(ax + b)/(cx + d)`


Show that `lim_(x -> 4) |x - 4|/(x - 4)` does not exists


`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is ______.


`lim_(x -> 1) (x^m - 1)/(x^n - 1)` is ______.


`lim_(x -> 0) (sin mx cot  x/sqrt(3))` = 2, then m = ______. 


`lim_(x rightarrow ∞) sum_(x = 1)^20 cos^(2n) (x - 10)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×