English

Evaluate the following : limx→a[sinx-sinax-a] - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following :

`lim_(x -> "a") [(sinx - sin"a")/(x - "a")]`

Sum

Solution

`lim_(x -> "a") (sinx - sin"a")/(x - "a")`

Put x = a + h,

∴ x – a = h

As x → a, h → 0

∴ `lim_(x -> "a") (sinx - sin"a")/(x - "a")`

= `lim_("h" -> 0) (sin "a" + "h" - sin"a")/"h"`

= `lim_("h" -> 0) (2cos (("a" + "h" + "a")/2) sin(("a" + "h" - "a")/2))/"h"`

= `lim_("h" -> 0) (2cos("a" + "h"/2) sin  "h"/2)/"h"`

= `lim_("h" -> 0) cos ("a" + "h"/2) * lim_("h" -> 0) (sin("h"/2))/(("h"/2))`

= `cos ("a" + 0)(1)  ...[because "h" -> 0, "h"/2 -> 0  "and" lim_(theta -> 0) sintheta/theta = 1]`

= cos a

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Limits - Miscellaneous Exercise 7.2 [Page 159]

APPEARS IN

RELATED QUESTIONS

Evaluate the following limit.

`lim_(x ->0) cos x/(pi - x)`


Evaluate the following limit.

`lim_(x -> (pi)/2) (tan 2x)/(x - pi/2)`


Evaluate the following limit :

`lim_(x -> 0) [(x*tanx)/(1 - cosx)]`


Evaluate the following limit :

`lim_(x ->0)((secx - 1)/x^2)`


Evaluate the following limit :

`lim_(x -> pi/4) [(cosx - sinx)/(cos2x)]`


Evaluate the following limit :

`lim_(x -> pi) [(sqrt(1 - cosx) - sqrt(2))/(sin^2 x)]`


Select the correct answer from the given alternatives.

`lim_(x → π/3) ((tan^2x - 3)/(sec^3x - 8))` =


Evaluate the following :

`lim_(x -> "a") [(x cos "a" - "a" cos x)/(x - "a")]`


Evaluate the following :

`lim_(x -> pi/4) [(sinx - cosx)^2/(sqrt(2) - sinx - cosx)]`


Find the positive integer n so that `lim_(x -> 3) (x^n - 3^n)/(x - 3)` = 108.


Evaluate `lim_(x -> 0)  (sin(2 + x) - sin(2 - x))/x`


Evaluate `lim_(x -> 0) (cos ax - cos bx)/(cos cx - 1)`


Find the derivative of f(x) = `sqrt(sinx)`, by first principle.


`lim_(x -> 0) |x|/x` is equal to ______.


If f(x) = x sinx, then f" `pi/2` is equal to ______.


Evaluate: `lim_(x -> 0) ((x + 2)^(1/3) - 2^(1/3))/x`


Evaluate: `lim_(x -> a) ((2 + x)^(5/2) - (a + 2)^(5/2))/(x - a)`


Evaluate: `lim_(x -> sqrt(2)) (x^4 - 4)/(x^2 + 3sqrt(2x) - 8)`


Evaluate: `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)`


Evaluate: `lim_(x -> 3) (x^3 + 27)/(x^5 + 243)`


Evaluate: `lim_(x -> 0) (sin 3x)/(sin 7x)`


Evaluate: `lim_(x -> 0) (sin^2 2x)/(sin^2 4x)`


Evaluate: `lim_(x -> pi/3) (sqrt(1 - cos 6x))/(sqrt(2)(pi/3 - x))`


Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`


Evaluate: `lim_(x -> 0) (sqrt(2) - sqrt(1 + cos x))/(sin^2x)`


Evaluate: `lim_(x -> 0) (sin x - 2 sin 3x + sin 5x)/x`


`x^(2/3)`


x cos x


`lim_(x -> pi) sinx/(x - pi)` is equal to ______.


`lim_(x -> 0) |sinx|/x` is ______.


If `f(x) = {{:(x^2 - 1",", 0 < x < 2),(2x + 3",", 2 ≤ x < 3):}`, the quadratic equation whose roots are `lim_(x -> 2^-) f(x)` and `lim_(x -> 2^+) f(x)` is ______. 


If `f(x) = tanx/(x - pi)`, then `lim_(x -> pi) f(x)` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×