Advertisements
Advertisements
Question
`x^(2/3)`
Solution
Let `f(x) = x^(2/3)` ....(i)
`f(x + Δx) = (x + Δx)^(2/3)` .....(ii)
Subtracting equation (i) from (ii) we get
`f(x + Δx) - f(x) = (x + Δx)^(2/3) - x^(2/3)`
Dividing both sides by Δx and take the limit.
`lim_(Δx -> 0) (f(x + Δx) - f(x))/(Δx) = lim_(Δx -> 0) ((x + Δx)^(2/3) - x^(2/3))/(Δx)`
f'(x) = `lim_(Δx -> 0) (x^(2/3) [1 + (Δx)/x]^(2/3) - x^(2/3))/(Δx)` ........[By definition of differentiation]
= `lim_(Δx -> 0) (x^(2/3) [(1 + (Δx)/x)^(2/3) - 1])/(Δx)`
= `lim_(Δx -> 0) (x^(2/3) [(1 + 2/3 * (Δx)/x + ...) - 1])/(Δx)`
[Expanding by Binomial theorem and rejecting the higher powers of Δx as Δx → 0]
= `lim_(Δx -> 0) (x^(2/3) * 2/3 * (Δx)/x)/(Δx)`
= `2/3 x^(2/3 - 1)`
= `2/3 x^((-1)/3)`
APPEARS IN
RELATED QUESTIONS
Evaluate the following limit.
`lim_(x -> pi) (sin(pi - x))/(pi (pi - x))`
Evaluate the following limit.
`lim_(x → 0) x sec x`
Evaluate the following limit.
`lim_(x -> 0) (cosec x - cot x)`
Evaluate the following limit :
`lim_(x -> 0) [(x*tanx)/(1 - cosx)]`
Evaluate the following limit :
`lim_(x -> pi/6) [(2sin^2x + sinx - 1)/(2sin^2x - 3sinx + 1)]`
Evaluate the following :
`lim_(x -> 0)[(secx^2 - 1)/x^4]`
Evaluate the following :
`lim_(x -> "a") [(sinx - sin"a")/(x - "a")]`
Evaluate the following :
`lim_(x -> pi/4) [(sinx - cosx)^2/(sqrt(2) - sinx - cosx)]`
`lim_{x→0}((3^x - 3^xcosx + cosx - 1)/(x^3))` is equal to ______
Evaluate `lim_(x -> 0) (sqrt(2 + x) - sqrt(2))/x`
Evaluate `lim_(x -> pi/6) (2sin^2x + sin x - 1)/(2sin^2 x - 3sin x + 1)`
Evaluate `lim_(x -> 0) (tanx - sinx)/(sin^3x)`
Evaluate `lim_(x -> a) (sqrt(a + 2x) - sqrt(3x))/(sqrt(3a + x) - 2sqrt(x))`
Evaluate `lim_(x -> 0) (cos ax - cos bx)/(cos cx - 1)`
`lim_(x -> 0) sinx/(x(1 + cos x))` is equal to ______.
Evaluate: `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)`
Evaluate: `lim_(x -> 3) (x^3 + 27)/(x^5 + 243)`
Evaluate: `lim_(x -> a) (sin x - sin a)/(sqrt(x) - sqrt(a))`
Evaluate: `lim_(x -> 0) (sin x - 2 sin 3x + sin 5x)/x`
`(ax + b)/(cx + d)`
x cos x
`lim_(x -> pi) sinx/(x - pi)` is equal to ______.
`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is ______.
`lim_(x -> 1) (x^m - 1)/(x^n - 1)` is ______.
`lim_(x -> pi/4) (sec^2x - 2)/(tan x - 1)` is equal to ______.
If `f(x) = {{:(x^2 - 1",", 0 < x < 2),(2x + 3",", 2 ≤ x < 3):}`, the quadratic equation whose roots are `lim_(x -> 2^-) f(x)` and `lim_(x -> 2^+) f(x)` is ______.
`lim_(x -> 0) (tan 2x - x)/(3x - sin x)` is equal to ______.
`lim_(x -> 0) (sin mx cot x/sqrt(3))` = 2, then m = ______.
`lim_(x -> 3^+) x/([x])` = ______.
If `lim_(x→∞) 1/(x + 1) tan((πx + 1)/(2x + 2)) = a/(π - b)(a, b ∈ N)`; then the value of a + b is ______.