English

Evaluate limx→0tanx-sinxsin3x - Mathematics

Advertisements
Advertisements

Question

Evaluate `lim_(x -> 0) (tanx - sinx)/(sin^3x)`

Sum

Solution

We have `lim_(x -> 0) (tanx - sinx)/(sin^3x)`

= `lim_(x -> 0) (sinx  1/cosx - 1)/(sin^3x)`

= `lim_(x -> 0) (1 - cosx)/(cosx sin^2x)`

= `lim_( -> 0) (2sin^2  x/2)/(cosx  4sin^2  x/2 * cos^2  x/2)`

= `1/2`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Solved Examples [Page 233]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Solved Examples | Q 15 | Page 233

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate the following limit.

`lim_(x -> pi) (sin(pi - x))/(pi (pi - x))`


Evaluate the following limit.

`lim_(x ->0) cos x/(pi - x)`


Evaluate the following limit.

`lim_(x -> (pi)/2) (tan 2x)/(x - pi/2)`


Evaluate the following limit :

`lim_(x -> 0)[(1 - cos("n"x))/(1 - cos("m"x))]`


Evaluate the following limit :

`lim_(x -> pi) [(sqrt(1 - cosx) - sqrt(2))/(sin^2 x)]`


Evaluate the following :

`lim_(x -> 0)[(secx^2 - 1)/x^4]`


Evaluate the following :

`lim_(x -> "a") [(sinx - sin"a")/(x - "a")]`


Evaluate `lim_(x -> 2) 1/(x - 2) - (2(2x - 3))/(x^3 - 3x^2 + 2x)`


Evaluate `lim_(x -> pi/2) (secx - tanx)`


Evaluate `lim_(x -> a) (sqrt(a + 2x) - sqrt(3x))/(sqrt(3a + x) - 2sqrt(x))`


`lim_(x -> pi/2) (1 - sin x)/cosx` is equal to ______.


`lim_(x -> 0) |x|/x` is equal to ______.


Evaluate: `lim_(x -> a) ((2 + x)^(5/2) - (a + 2)^(5/2))/(x - a)`


Evaluate: `lim_(x -> 1) (x^4 - sqrt(x))/(sqrt(x) - 1)`


Evaluate: `lim_(x -> sqrt(2)) (x^4 - 4)/(x^2 + 3sqrt(2x) - 8)`


Evaluate: `lim_(x -> 0) (sin 3x)/(sin 7x)`


Evaluate: `lim_(x -> 0) (1 - cos 2x)/x^2`


Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`


Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`


Evaluate: `lim_(x -> pi/6) (cot^2 x - 3)/("cosec"  x - 2)`


`(ax + b)/(cx + d)`


x cos x


`lim_(y -> 0) ((x + y) sec(x + y) - x sec x)/y`


Show that `lim_(x -> 4) |x - 4|/(x - 4)` does not exists


`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is ______.


`lim_(x -> 0) ((1 + x)^n - 1)/x` is equal to ______.


`lim_(x -> 0) ("cosec" x - cot x)/x` is equal to ______.


`lim_(x -> 0) |sinx|/x` is ______.


The value of `lim_(x rightarrow 0) (4^x - 1)^3/(sin  x^2/4 log(1 + 3x))`, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×