English

Evaluate limx→π62sin2x+sinx-12sin2x-3sinx+1 - Mathematics

Advertisements
Advertisements

Question

Evaluate `lim_(x -> pi/6) (2sin^2x + sin x - 1)/(2sin^2 x - 3sin x + 1)`

Sum

Solution

Note that `2sin^2x + sin x - 1 = (2 sin x - 1)(sin x + 1)`

`2sin^2x - 3 sin x + 1 = (2 sin x - 1) (sin x - 1)`

Therefore, `lim_(x -> pi/6) (2sin^2x + sinx - 1)/(2sin^2x - 3sin x + 1)`

= `lim_(x -> pi/6) ((2sinx - 1)(sinx + 1))/((2sinx - 1)(sin x - 1))`

= `lim_(x -> pi/6) (sinx + 1)/(sinx - 1)`   ......(As 2 sin x – 1 ≠ 0)

= `(1 + sin  pi/6)/(sin  pi/6 - 1)`

= – 3

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Solved Examples [Page 232]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Solved Examples | Q 14 | Page 232

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate the following limit.

`lim_(x -> pi) (sin(pi - x))/(pi (pi - x))`


Evaluate the following limit.

`lim_(x ->0) cos x/(pi - x)`


Evaluate the following limit.

`lim_(x -> 0) (ax +  xcos x)/(b sin x)`


Evaluate the following limit.

`lim_(x -> (pi)/2) (tan 2x)/(x - pi/2)`


Evaluate the following limit :

`lim_(x ->0)((secx - 1)/x^2)`


Evaluate the following limit :

`lim_(x -> 0)[(1 - cos("n"x))/(1 - cos("m"x))]`


Evaluate the following limit :

`lim_(x -> pi/4) [(tan^2x - cot^2x)/(secx - "cosec"x)]`


Select the correct answer from the given alternatives.

`lim_(x -> 0) ((5sinx - xcosx)/(2tanx - 3x^2))` =


Evaluate `lim_(x -> 0) (tanx - sinx)/(sin^3x)`


`lim_(x -> 0) sinx/(x(1 + cos x))` is equal to ______.


Evaluate: `lim_(x -> 1/2) (4x^2 - 1)/(2x  - 1)`


Evaluate: `lim_(x -> 0) ((x + 2)^(1/3) - 2^(1/3))/x`


Evaluate: `lim_(x -> sqrt(2)) (x^4 - 4)/(x^2 + 3sqrt(2x) - 8)`


Evaluate: `lim_(x -> 1/2) (8x - 3)/(2x - 1) - (4x^2 + 1)/(4x^2 - 1)`


Evaluate: `lim_(x -> 0) (sin 3x)/(sin 7x)`


Evaluate: `lim_(x -> 0) (sin^2 2x)/(sin^2 4x)`


Evaluate: `lim_(x -> 0) (sin 2x + 3x)/(2x + tan 3x)`


Evaluate: `lim_(x -> pi/6) (cot^2 x - 3)/("cosec"  x - 2)`


Evaluate: `lim_(x -> 0) (sqrt(2) - sqrt(1 + cos x))/(sin^2x)`


Evaluate: `lim_(x -> 0) (sin x - 2 sin 3x + sin 5x)/x`


`(ax + b)/(cx + d)`


`x^(2/3)`


`lim_(y -> 0) ((x + y) sec(x + y) - x sec x)/y`


`lim_(x -> 0) ("cosec" x - cot x)/x` is equal to ______.


`lim_(x -> 0) sinx/(sqrt(x + 1) - sqrt(1 - x)` is ______.


If `f(x) = {{:(x^2 - 1",", 0 < x < 2),(2x + 3",", 2 ≤ x < 3):}`, the quadratic equation whose roots are `lim_(x -> 2^-) f(x)` and `lim_(x -> 2^+) f(x)` is ______. 


If `f(x) = tanx/(x - pi)`, then `lim_(x -> pi) f(x)` = ______.


`lim_(x -> 3^+) x/([x])` = ______.


The value of `lim_(x → ∞) ((x^2 - 1)sin^2(πx))/(x^4 - 2x^3 + 2x - 1)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×