Advertisements
Advertisements
Question
Evaluate: `lim_(x -> 0) (sqrt(2) - sqrt(1 + cos x))/(sin^2x)`
Solution
Given that `lim_(x -> 0) (sqrt(2) - sqrt(1 + cos x))/(sin^2x)`
= `lim_(x -> 0) (sqrt(2) - sqrt(1 + cos x))/(sin^2x) xx (sqrt(2) + sqrt(1 + cosx))/(sqrt(2) + sqrt(1 + cos x))`
= `lim_(x -> 0) (2 - (1 + cos x))/(sin^2x [sqrt(2) + sqrt(1 + cos x)])`
= `lim_(x -> 0) (1 - cos x)/(sin^2 xx [sqrt(2) + sqrt(1 + cos x)])`
= `lim_(x -> 0) (2 sin^2 x/2)/((2 sin x/2 cos x/2)^2) xx 1/([sqrt(2) + sqrt(1 + cos x)])`
= `lim_(x -> 0) (2 sin^2 x/2)/(4 sin^2 x/2 cos^2 x/2) xx 1/([sqrt(2) + sqrt(1 + cos x)])`
= `lim_(x -> 0) 2/(4 cos^2 x/2) xx 1/([sqrt(2) + sqrt(1 + cos x)])`
Taking limit, we get
= `2/(4 cos^2 0) xx 1/((sqrt(2) + sqrt(2))`
= `1/2 xx 1/(2sqrt(2))`
= `1/(4sqrt(2))`
APPEARS IN
RELATED QUESTIONS
Evaluate the following limit :
`lim_(theta -> 0) [(sin("m"theta))/(tan("n"theta))]`
Evaluate the following limit :
`lim_(x -> pi) [(sqrt(1 - cosx) - sqrt(2))/(sin^2 x)]`
Select the correct answer from the given alternatives.
`lim_(x -> 0) ((5sinx - xcosx)/(2tanx - 3x^2))` =
Evaluate the following :
`lim_(x -> "a") [(x cos "a" - "a" cos x)/(x - "a")]`
Evaluate `lim_(x -> a) (sqrt(a + 2x) - sqrt(3x))/(sqrt(3a + x) - 2sqrt(x))`
Evaluate `lim_(x -> 0) (cos ax - cos bx)/(cos cx - 1)`
`lim_(x -> 0) sinx/(x(1 + cos x))` is equal to ______.
`lim_(x -> 1) [x - 1]`, where [.] is greatest integer function, is equal to ______.
Evaluate: `lim_(x -> 1) (x^4 - sqrt(x))/(sqrt(x) - 1)`
Evaluate: `lim_(x -> 0) (sin^2 2x)/(sin^2 4x)`
Evaluate: `lim_(x -> 0) (1 - cos 2x)/x^2`
Evaluate: `lim_(x -> 0) (2 sin x - sin 2x)/x^3`
Evaluate: `lim_(x -> pi/4) (sin x - cosx)/(x - pi/4)`
Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`
Evaluate: `lim_(x -> 0) (sin 2x + 3x)/(2x + tan 3x)`
Evaluate: `lim_(x -> 0) (sin x - 2 sin 3x + sin 5x)/x`
cos (x2 + 1)
`x^(2/3)`
`lim_(x -> pi) (1 - sin x/2)/(cos x/2 (cos x/4 - sin x/4))`
`lim_(x -> 0) ((1 + x)^n - 1)/x` is equal to ______.
`lim_(x -> 0) (1 - cos 4theta)/(1 - cos 6theta)` is ______.
`lim_(x -> 0) sinx/(sqrt(x + 1) - sqrt(1 - x)` is ______.
If `f(x) = {{:(x^2 - 1",", 0 < x < 2),(2x + 3",", 2 ≤ x < 3):}`, the quadratic equation whose roots are `lim_(x -> 2^-) f(x)` and `lim_(x -> 2^+) f(x)` is ______.
The value of `lim_(x → ∞) ((x^2 - 1)sin^2(πx))/(x^4 - 2x^3 + 2x - 1)` is equal to ______.
If `lim_(x→∞) 1/(x + 1) tan((πx + 1)/(2x + 2)) = a/(π - b)(a, b ∈ N)`; then the value of a + b is ______.
`lim_(x rightarrow π/2) ([1 - tan (x/2)] (1 - sin x))/([1 + tan (x/2)] (π - 2x)^3` is ______.