Advertisements
Advertisements
Question
`lim_(x -> 0) sinx/(x(1 + cos x))` is equal to ______.
Options
0
`1/2`
1
–1
Solution
`lim_(x -> 0) sinx/(x(1 + cos x))` is equal to `1/2`.
Explanation:
We have `lim_(x -> 0) sinx/(x(1 + cos x))`
= `lim_(x -> 0) (2sin x/2 cos x/2)/(x 2 cos^2 x/2)`
= `1/2 lim_(x -> 0) (tan x/2)/(x/2)`
= `1/2`
APPEARS IN
RELATED QUESTIONS
Evaluate the following limit.
`lim_(x ->0) cos x/(pi - x)`
Evaluate the following limit.
`lim_(x -> 0) (cos 2x -1)/(cos x - 1)`
Evaluate the following limit.
`lim_(x -> 0) (sin ax + bx)/(ax + sin bx) a, b, a+ b != 0`
Evaluate the following limit :
`lim_(x -> 0)[(1 - cos("n"x))/(1 - cos("m"x))]`
Evaluate the following limit :
`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`
Evaluate the following :
`lim_(x -> 0)[(secx^2 - 1)/x^4]`
Evaluate `lim_(x -> 0) (sqrt(2 + x) - sqrt(2))/x`
Evaluate `lim_(x -> 0) (sin(2 + x) - sin(2 - x))/x`
If f(x) = x sinx, then f" `pi/2` is equal to ______.
Evaluate: `lim_(x -> 0) ((x + 2)^(1/3) - 2^(1/3))/x`
Evaluate: `lim_(x -> 1) (x^4 - sqrt(x))/(sqrt(x) - 1)`
Evaluate: `lim_(x -> sqrt(2)) (x^4 - 4)/(x^2 + 3sqrt(2x) - 8)`
Evaluate: `lim_(x -> 3) (x^3 + 27)/(x^5 + 243)`
Evaluate: `lim_(x -> 0) (sin 3x)/(sin 7x)`
Evaluate: `lim_(x -> 0) (sin^2 2x)/(sin^2 4x)`
Evaluate: `lim_(x -> 0) (1 - cos 2x)/x^2`
Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`
Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`
Evaluate: `lim_(x -> 0) (sqrt(2) - sqrt(1 + cos x))/(sin^2x)`
`(ax + b)/(cx + d)`
x cos x
Show that `lim_(x -> 4) |x - 4|/(x - 4)` does not exists
`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is ______.
`lim_(x -> 0) sinx/(sqrt(x + 1) - sqrt(1 - x)` is ______.
`lim_(x -> 0) (tan 2x - x)/(3x - sin x)` is equal to ______.
The value of `lim_(x → ∞) ((x^2 - 1)sin^2(πx))/(x^4 - 2x^3 + 2x - 1)` is equal to ______.
If L = `lim_(x→∞)(x^2sin 1/x - x)/(1 - |x|)`, then value of L is ______.