English

Limx→0sinxx(1+cosx) is equal to ______. - Mathematics

Advertisements
Advertisements

Question

`lim_(x -> 0) sinx/(x(1 + cos x))` is equal to ______.

Options

  • 0

  • `1/2`

  • 1

  • –1

MCQ
Fill in the Blanks

Solution

`lim_(x -> 0) sinx/(x(1 + cos x))` is equal to `1/2`.

Explanation:

We have `lim_(x -> 0) sinx/(x(1 + cos x))`

= `lim_(x -> 0) (2sin  x/2 cos  x/2)/(x  2 cos^2  x/2)`

= `1/2 lim_(x -> 0)  (tan  x/2)/(x/2)`

= `1/2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Solved Examples [Page 237]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Solved Examples | Q 22 | Page 237

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate the following limit.

`lim_(x ->0) cos x/(pi - x)`


Evaluate the following limit.

`lim_(x -> 0) (cos 2x -1)/(cos x - 1)`


Evaluate the following limit.

`lim_(x -> 0) (sin ax + bx)/(ax + sin bx) a, b, a+ b != 0`


Evaluate the following limit :

`lim_(x -> 0)[(1 - cos("n"x))/(1 - cos("m"x))]`


Evaluate the following limit :

`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`


Evaluate the following :

`lim_(x -> 0)[(secx^2 - 1)/x^4]`


Evaluate `lim_(x -> 0) (sqrt(2 + x) - sqrt(2))/x`


Evaluate `lim_(x -> 0)  (sin(2 + x) - sin(2 - x))/x`


If f(x) = x sinx, then f" `pi/2` is equal to ______.


Evaluate: `lim_(x -> 0) ((x + 2)^(1/3) - 2^(1/3))/x`


Evaluate: `lim_(x -> 1) (x^4 - sqrt(x))/(sqrt(x) - 1)`


Evaluate: `lim_(x -> sqrt(2)) (x^4 - 4)/(x^2 + 3sqrt(2x) - 8)`


Evaluate: `lim_(x -> 3) (x^3 + 27)/(x^5 + 243)`


Evaluate: `lim_(x -> 0) (sin 3x)/(sin 7x)`


Evaluate: `lim_(x -> 0) (sin^2 2x)/(sin^2 4x)`


Evaluate: `lim_(x -> 0) (1 - cos 2x)/x^2`


Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`


Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`


Evaluate: `lim_(x -> 0) (sqrt(2) - sqrt(1 + cos x))/(sin^2x)`


`(ax + b)/(cx + d)`


x cos x


Show that `lim_(x -> 4) |x - 4|/(x - 4)` does not exists


`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is ______.


`lim_(x -> 0) sinx/(sqrt(x + 1) - sqrt(1 - x)` is ______.


`lim_(x -> 0) (tan 2x - x)/(3x - sin x)` is equal to ______.


The value of `lim_(x → ∞) ((x^2 - 1)sin^2(πx))/(x^4 - 2x^3 + 2x - 1)` is equal to ______.


If L = `lim_(x→∞)(x^2sin  1/x - x)/(1 - |x|)`, then value of L is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×