English

Evaluate the following limit : limx→0[1-cos(nx)1-cos(mx)] - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following limit :

`lim_(x -> 0)[(1 - cos("n"x))/(1 - cos("m"x))]`

Sum

Solution

`lim_(x -> 0)(1 - cos"n"x)/(1 - cos"m"x)`

= `lim_(x -> 0) (1 - cos"n"x)/(1 - cos"m"x) xx (1 + cos "n"x)/(1 + cos "n"x) xx (1 + cos"m"x)/(1 + cos"m"x)`

= `lim_(x -> 0) ((1 - cos^2"n"x)(1 + cos"m"x))/((1 - cos^2"m"x)(1 + cos "n"x))`

= `lim_(x -> 0) (sin^2"n"x(1 + cos "m"x))/(sin^2"m"x(1 + cos "n"x))`

= `lim_(x -> 0) (((sin^2"n"x)/("n"^2x^2))(1 + cos "m"x))/(((sin^2"m"x)/("m"^2x^2))(1 + cos "n"x)) xx "n"^2/"m"^2`  ...[∵ x → 0, x ≠ 0 ∴ x2 ≠ 0]

= `"n"^2/"m"^2 ([lim_(x -> 0) (sin"n"x)/("n"x)]^2 xx [lim_(x -> 0) (1 + cos "m"x)])/([lim_(x -> 0) (sin"m"x)/("m"x)]^2 xx [lim_(x -> 0) (1 + cos "n"x)])`

= `"n"^2/"m"^2 (1^2*(1 + cos 0))/(1^2*(1 + cos 0))  ...[because  x -> 0  therefore "m"x, "n"x -> 0 and lim_(theta -> 0)  sintheta/theta = 1]`

= `"n"^2/"m"^2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Limits - Exercise 7.4 [Page 148]

RELATED QUESTIONS

Evaluate the following limit.

`lim_(x -> 0) (ax +  xcos x)/(b sin x)`


Evaluate the following limit.

`lim_(x -> (pi)/2) (tan 2x)/(x - pi/2)`


Evaluate the following limit :

`lim_(x -> pi/6) [(2 - "cosec"x)/(cot^2x - 3)]`


Evaluate the following limit :

`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`


Evaluate the following limit :

`lim_(x -> pi) [(sqrt(1 - cosx) - sqrt(2))/(sin^2 x)]`


Evaluate the following limit :

`lim_(x -> pi/4) [(tan^2x - cot^2x)/(secx - "cosec"x)]`


Evaluate the following :

`lim_(x -> "a") [(sinx - sin"a")/(x - "a")]`


Evaluate `lim_(x -> 0)  (sin(2 + x) - sin(2 - x))/x`


Evaluate `lim_(x -> 0) (tanx - sinx)/(sin^3x)`


Evaluate `lim_(x -> 0) (cos ax - cos bx)/(cos cx - 1)`


`lim_(x -> 0) |x|/x` is equal to ______.


Evaluate: `lim_(x -> 1/2) (4x^2 - 1)/(2x  - 1)`


Evaluate: `lim_(x -> 0) (sqrt(1 + x^3) - sqrt(1 - x^3))/x^2`


Evaluate: `lim_(x -> 1/2) (8x - 3)/(2x - 1) - (4x^2 + 1)/(4x^2 - 1)`


Evaluate: `lim_(x -> 0) (sin 3x)/(sin 7x)`


Evaluate: `lim_(x -> 0) (1 - cos 2x)/x^2`


Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`


Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`


Evaluate: `lim_(x -> a) (sin x - sin a)/(sqrt(x) - sqrt(a))`


Evaluate: `lim_(x -> pi/6) (cot^2 x - 3)/("cosec"  x - 2)`


Evaluate: `lim_(x -> 0) (sin x - 2 sin 3x + sin 5x)/x`


`lim_(y -> 0) ((x + y) sec(x + y) - x sec x)/y`


`lim_(x -> pi) sinx/(x - pi)` is equal to ______.


`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is ______.


`lim_(x -> 0) (1 - cos 4theta)/(1 - cos 6theta)` is ______.


`lim_(x -> 0) ("cosec" x - cot x)/x` is equal to ______.


`lim_(x -> 0) sinx/(sqrt(x + 1) - sqrt(1 - x)` is ______.


`lim_(x -> 1) ((sqrt(x) - 1)(2x - 3))/(2x^2 + x - 3)` is ______.


If `f(x) = {{:(sin[x]/[x]",", [x] ≠ 0),(0",", [x] = 0):}`, where [.] denotes the greatest integer function, then `lim_(x -> 0) f(x)` is equal to ______.


If `f(x) = tanx/(x - pi)`, then `lim_(x -> pi) f(x)` = ______.


If `lim_(n→∞)sum_(k = 2)^ncos^-1(1 + sqrt((k - 1)(k + 2)(k + 1)k)/(k(k + 1))) = π/λ`, then the value of λ is ______.


`lim_(x rightarrow π/2) ([1 - tan (x/2)] (1 - sin x))/([1 + tan (x/2)] (π - 2x)^3` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×