English

Evaluate the following limit : limx→π6[2-cosecxcot2x-3] - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following limit :

`lim_(x -> pi/6) [(2 - "cosec"x)/(cot^2x - 3)]`

Sum

Solution

`lim_(x -> pi/6) [(2 - "cosec"x)/(cot^2x - 3)]`

= `lim_(x -> pi/6) (2 - "cosec"x)/("cosec"^2x - 1 - 3)`

= `lim_(x -> pi/6) (2 - "cosec"x)/("cosec"^2x - 4)`

= `lim_(x -> pi/6) (-("cosec"x - 2))/(("cosec"x - 2)("cosec"x + 2))`

= `lim_(x -> pi/6) (-1)/(("cosec"x + 2))   ...[(because x -> pi/6","  therefore x ≠ pi/6"," therefore "cosec" pi/6","),(therefore "cosec"x ≠ 2"," therefore "cosec"x - 2 ≠ 0)]`

= `(-1)/("cosec"(pi/6) + 2)`

= `(-1)/(2 + 2)`

= `(-1)/4`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Limits - Exercise 7.4 [Page 148]

RELATED QUESTIONS

Evaluate the following limit.

`lim_(x -> pi) (sin(pi - x))/(pi (pi - x))`


Evaluate the following limit.

`lim_(x ->0) cos x/(pi - x)`


Evaluate the following limit.

`lim_(x -> 0) (sin ax + bx)/(ax + sin bx) a, b, a+ b != 0`


Evaluate the following limit.

`lim_(x -> 0) (cosec x -  cot x)`


Evaluate the following limit :

`lim_(theta -> 0) [(sin("m"theta))/(tan("n"theta))]`


Evaluate the following limit :

`lim_(x -> 0) [(x*tanx)/(1 - cosx)]`


Evaluate the following limit :

`lim_(x ->0)((secx - 1)/x^2)`


Evaluate the following limit :

`lim_(x -> pi) [(sqrt(1 - cosx) - sqrt(2))/(sin^2 x)]`


Evaluate the following :

`lim_(x -> 0) [(x(6^x - 3^x))/(cos (6x) - cos (4x))]`


`lim_{x→0}((3^x - 3^xcosx + cosx - 1)/(x^3))` is equal to ______ 


Find the derivative of f(x) = `sqrt(sinx)`, by first principle.


`lim_(x -> 0) |x|/x` is equal to ______.


`lim_(x -> 1) [x - 1]`, where [.] is greatest integer function, is equal to ______.


If f(x) = x sinx, then f" `pi/2` is equal to ______.


Evaluate: `lim_(x -> 3) (x^2 - 9)/(x - 3)`


Evaluate: `lim_(x -> 1) (x^4 - sqrt(x))/(sqrt(x) - 1)`


Evaluate: `lim_(x -> 3) (x^3 + 27)/(x^5 + 243)`


Evaluate: `lim_(x -> 0) (sin^2 2x)/(sin^2 4x)`


Evaluate: `lim_(x -> 0) (1 - cos 2x)/x^2`


Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`


Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`


Evaluate: `lim_(x -> a) (sin x - sin a)/(sqrt(x) - sqrt(a))`


Evaluate: `lim_(x -> pi/6) (cot^2 x - 3)/("cosec"  x - 2)`


`(ax + b)/(cx + d)`


`x^(2/3)`


`lim_(y -> 0) ((x + y) sec(x + y) - x sec x)/y`


`lim_(x -> pi/4) (tan^3x - tan x)/(cos(x + pi/4))`


`lim_(x -> 0) ("cosec" x - cot x)/x` is equal to ______.


`lim_(x -> 0) |sinx|/x` is ______.


`lim_(x -> 0) (sin mx cot  x/sqrt(3))` = 2, then m = ______. 


The value of `lim_(x → ∞) ((x^2 - 1)sin^2(πx))/(x^4 - 2x^3 + 2x - 1)` is equal to ______.


If `lim_(n→∞)sum_(k = 2)^ncos^-1(1 + sqrt((k - 1)(k + 2)(k + 1)k)/(k(k + 1))) = π/λ`, then the value of λ is ______.


The value of `lim_(x rightarrow 0) (4^x - 1)^3/(sin  x^2/4 log(1 + 3x))`, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×