Advertisements
Advertisements
Question
Evaluate: `lim_(x -> a) (sin x - sin a)/(sqrt(x) - sqrt(a))`
Solution
Given that `lim_(x -> a) (sin x - sin a)/(sqrt(x) - sqrt(a))`
= `lim_(x -> a) (sin x - sin a)/(sqrt(x) - sqrt(a)) xx (sqrt(x) + sqrt(a))/(sqrt(x) + sqrt(a))`
= `lim_(x -> a) ((sin x - sin a)(sqrt(x) + sqrt(a)))/(x - a)`
= `lim_(x -> a) ((2 cos (x + a)/2 * sin (x - a)/2)(sqrt(x) + sqrt(a)))/(x - a)`
= `lim_((x -> a),(because (x - a)/2 -> 0)) (2 cos (x + a)/2 * (sin (x - a)/2)/(2 xx (x - a)/2)) (sqrt(x) + sqrt(a))`
= `lim_(x -> a) cos((x + a)/2)(sqrt(x) + sqrt(1))` .....`[because lim_((x - a)/2 -> 0) (sin (x - a)/2)/((x - a)/2) = 1]`
Taking limit we have
= `cos ((a + a)/2)(sqrt(a) + sqrt(a))`
= `cos a xx 2sqrt(a)`
= `2sqrt(a) * cos a`
APPEARS IN
RELATED QUESTIONS
Evaluate the following limit.
`lim_(x -> 0) (ax + xcos x)/(b sin x)`
Evaluate the following limit :
`lim_(x -> 0) [(x*tanx)/(1 - cosx)]`
Evaluate the following limit :
`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`
Select the correct answer from the given alternatives.
`lim_(x -> 0) ((5sinx - xcosx)/(2tanx - 3x^2))` =
Select the correct answer from the given alternatives.
`lim_(x -> pi/2) [(3cos x + cos 3x)/(2x - pi)^3]` =
`lim_{x→-5} (sin^-1(x + 5))/(x^2 + 5x)` is equal to ______
Evaluate `lim_(x -> pi/2) (secx - tanx)`
Evaluate `lim_(x -> pi/6) (2sin^2x + sin x - 1)/(2sin^2 x - 3sin x + 1)`
Evaluate `lim_(x -> 0) (tanx - sinx)/(sin^3x)`
Evaluate `lim_(x -> 0) (cos ax - cos bx)/(cos cx - 1)`
`lim_(x -> 0) sinx/(x(1 + cos x))` is equal to ______.
`lim_(x -> pi/2) (1 - sin x)/cosx` is equal to ______.
Evaluate: `lim_(x -> 3) (x^2 - 9)/(x - 3)`
Evaluate: `lim_(x -> 1/2) (4x^2 - 1)/(2x - 1)`
Evaluate: `lim_(x -> 1/2) (8x - 3)/(2x - 1) - (4x^2 + 1)/(4x^2 - 1)`
Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`
Evaluate: `lim_(x -> pi/3) (sqrt(1 - cos 6x))/(sqrt(2)(pi/3 - x))`
cos (x2 + 1)
`lim_(x -> 0) ("cosec" x - cot x)/x` is equal to ______.
`lim_(x -> 1) ((sqrt(x) - 1)(2x - 3))/(2x^2 + x - 3)` is ______.
`lim_(x -> 0) |sinx|/x` is ______.
If `f(x) = {{:(x^2 - 1",", 0 < x < 2),(2x + 3",", 2 ≤ x < 3):}`, the quadratic equation whose roots are `lim_(x -> 2^-) f(x)` and `lim_(x -> 2^+) f(x)` is ______.
If `lim_(x→∞) 1/(x + 1) tan((πx + 1)/(2x + 2)) = a/(π - b)(a, b ∈ N)`; then the value of a + b is ______.
If `lim_(n→∞)sum_(k = 2)^ncos^-1(1 + sqrt((k - 1)(k + 2)(k + 1)k)/(k(k + 1))) = π/λ`, then the value of λ is ______.
`lim_(x rightarrow π/2) ([1 - tan (x/2)] (1 - sin x))/([1 + tan (x/2)] (π - 2x)^3` is ______.