English

Select the correct answer from the given alternatives. limx→π2[3cosx+cos3x(2x-π)3] = - Mathematics and Statistics

Advertisements
Advertisements

Question

Select the correct answer from the given alternatives.

`lim_(x -> pi/2) [(3cos x + cos 3x)/(2x - pi)^3]` =

Options

  • `3/2`

  • `1/2`

  • `-1/2`

  • `1/4`

MCQ

Solution

`lim_(x -> pi/2) [(3cos x + cos 3x)/(2x - pi)^3] = underline (-1/2)`

Explanation:

`lim_(x -> pi/2) [(3cos x + cos 3x)/(2x - pi)^3]`

= `lim_(x -> pi/2)(3cos x + 4cos^3x - 3cos x)/(2x - pi)^3`

= `lim_(x -> pi/2) (4cos^3x) /(8(x - pi/2)^3` 

Put `x = pi/2 + h,`

`x - pi/2 = h`

As `x -> pi/2, h -> 0`

= `lim_(x -> pi/2) (4 cos^3x) /(8(x - pi/2)^3` 

= `lim_(h-> 0) (4 cos^3(pi/2 + h))/(8h^3)`

= `lim_(h -> 0) (4(-sin h)^3)/(8h^3)`           ...`[∵ cos(pi/2 + θ) = -sinθ]`

= `-1/2(lim_(h->0)(sin h)/h)^3`

= `-1/2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Limits - Miscellaneous Exercise 7.1 [Page 158]

APPEARS IN

RELATED QUESTIONS

Evaluate the following limit.

`lim_(x -> pi) (sin(pi - x))/(pi (pi - x))`


Evaluate the following limit.

`lim_(x -> (pi)/2) (tan 2x)/(x - pi/2)`


Evaluate the following limit :

`lim_(theta -> 0) [(sin("m"theta))/(tan("n"theta))]`


Evaluate the following limit :

`lim_(theta -> 0) [(1 - cos2theta)/theta^2]`


Evaluate the following limit :

`lim_(x -> 0) [(x*tanx)/(1 - cosx)]`


Evaluate the following limit :

`lim_(x -> 0)[(1 - cos("n"x))/(1 - cos("m"x))]`


Evaluate `lim_(x -> 2) 1/(x - 2) - (2(2x - 3))/(x^3 - 3x^2 + 2x)`


Evaluate `lim_(x -> 0)  (sin(2 + x) - sin(2 - x))/x`


Evaluate `lim_(x -> 0) (cos ax - cos bx)/(cos cx - 1)`


Find the derivative of f(x) = `sqrt(sinx)`, by first principle.


`lim_(x -> 1) [x - 1]`, where [.] is greatest integer function, is equal to ______.


Evaluate: `lim_(x -> 3) (x^2 - 9)/(x - 3)`


Evaluate: `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)`


Evaluate: `lim_(x -> 0) (sin 3x)/(sin 7x)`


Evaluate: `lim_(x -> 0) (1 - cos 2x)/x^2`


Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`


Evaluate: `lim_(x -> pi/4)  (sin x - cosx)/(x - pi/4)`


Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`


`x^(2/3)`


`lim_(x -> 0) ((sin(alpha + beta) x + sin(alpha - beta)x + sin 2alpha x))/(cos 2betax - cos 2alphax) * x`


`lim_(x -> pi) (1 - sin  x/2)/(cos  x/2 (cos  x/4 - sin  x/4))`


Show that `lim_(x -> 4) |x - 4|/(x - 4)` does not exists


`lim_(x -> 1) (x^m - 1)/(x^n - 1)` is ______.


`lim_(x -> 0) ("cosec" x - cot x)/x` is equal to ______.


`lim_(x -> 0) sinx/(sqrt(x + 1) - sqrt(1 - x)` is ______.


`lim_(x -> 0) |sinx|/x` is ______.


If `f(x) = tanx/(x - pi)`, then `lim_(x -> pi) f(x)` = ______.


Let Sk = `sum_(r = 1)^k tan^-1(6^r/(2^(2r + 1) + 3^(2r + 1)))`. Then `lim_(k→∞)` Sk = is equal to ______.


If `lim_(n→∞)sum_(k = 2)^ncos^-1(1 + sqrt((k - 1)(k + 2)(k + 1)k)/(k(k + 1))) = π/λ`, then the value of λ is ______.


The value of `lim_(x rightarrow 0) (4^x - 1)^3/(sin  x^2/4 log(1 + 3x))`, is ______.


`lim_(x rightarrow π/2) ([1 - tan (x/2)] (1 - sin x))/([1 + tan (x/2)] (π - 2x)^3` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×