English

Evaluate: limx→π31-cos6x2(π3-x) - Mathematics

Advertisements
Advertisements

Question

Evaluate: `lim_(x -> pi/3) (sqrt(1 - cos 6x))/(sqrt(2)(pi/3 - x))`

Sum

Solution

Given that `lim_(x -> pi/3) (sqrt(1 - cos 6x))/(sqrt(2)(pi/3 - x))`

= `lim_(x -> pi/2) (sqrt(2 sin^2 3x))/(sqrt(2) (pi/3 - x))`  ......`[because 1 - cos theta = 2 sin^2  theta/2]`

= `lim_(x -> pi/3) (sqrt(2) sin 3x)/(sqrt(2)((pi - 3x)/3))`

= `lim_((x -> pi/3),(because  pi - 3x -> 0)) (3 * sin (pi - 3x))/(pi - 3x)`

= 3   .....`[because  lim_(x -> 0)  sinx/x = 1]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Exercise [Page 240]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Exercise | Q 20 | Page 240

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate the following limit.

`lim_(x ->0) cos x/(pi - x)`


Evaluate the following limit.

`lim_(x -> 0) (cos 2x -1)/(cos x - 1)`


Evaluate the following limit.

`lim_(x -> 0) (cosec x -  cot x)`


Evaluate the following limit.

`lim_(x -> (pi)/2) (tan 2x)/(x - pi/2)`


Evaluate the following limit :

`lim_(x -> pi/6) [(2sin^2x + sinx - 1)/(2sin^2x - 3sinx + 1)]`


Select the correct answer from the given alternatives.

`lim_(x → π/3) ((tan^2x - 3)/(sec^3x - 8))` =


Select the correct answer from the given alternatives.

`lim_(x -> pi/2) [(3cos x + cos 3x)/(2x - pi)^3]` =


Evaluate the following :

`lim_(x -> pi/4) [(sinx - cosx)^2/(sqrt(2) - sinx - cosx)]`


Evaluate `lim_(x -> pi/2) (secx - tanx)`


Evaluate `lim_(x -> 0)  (sin(2 + x) - sin(2 - x))/x`


Evaluate `lim_(x -> 0) (tanx - sinx)/(sin^3x)`


Evaluate `lim_(x -> a) (sqrt(a + 2x) - sqrt(3x))/(sqrt(3a + x) - 2sqrt(x))`


Find the derivative of f(x) = `sqrt(sinx)`, by first principle.


Evaluate: `lim_(x -> a) ((2 + x)^(5/2) - (a + 2)^(5/2))/(x - a)`


Evaluate: `lim_(x -> 0) (sqrt(1 + x^3) - sqrt(1 - x^3))/x^2`


Evaluate: `lim_(x -> 1/2) (8x - 3)/(2x - 1) - (4x^2 + 1)/(4x^2 - 1)`


Evaluate: `lim_(x -> 0) (sin 3x)/(sin 7x)`


Evaluate: `lim_(x -> 0) (sin^2 2x)/(sin^2 4x)`


Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`


Evaluate: `lim_(x -> 0) (sin x - 2 sin 3x + sin 5x)/x`


`x^(2/3)`


`lim_(x -> 0) ((1 + x)^n - 1)/x` is equal to ______.


`lim_(x -> 0) (1 - cos 4theta)/(1 - cos 6theta)` is ______.


`lim_(x -> 0) |sinx|/x` is ______.


The value of `lim_(x → ∞) ((x^2 - 1)sin^2(πx))/(x^4 - 2x^3 + 2x - 1)` is equal to ______.


If `lim_(x→∞) 1/(x + 1) tan((πx + 1)/(2x + 2)) = a/(π - b)(a, b ∈ N)`; then the value of a + b is ______.


The value of `lim_(x rightarrow 0) (4^x - 1)^3/(sin  x^2/4 log(1 + 3x))`, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×