Advertisements
Advertisements
Question
Evaluate the following limit :
`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`
Solution
`lim_(x -> 0) (cos("a"x) - cos("b"x))/(cos("c"x) - 1)`
= `lim_(x -> 0) (-cos("a"x) + cos("b"x))/(1 - cos("c"x))`
= `lim_(x -> 0) (1 - cos "a"x - 1 + cos "b"x)/(1 - cos "c"x)`
= `lim_(x -> 0) ((1 - cos"a"x) - (1 - cos"b"x))/(1 - cos"c"x)`
= `lim_(x -> 0) (2sin^2 (("a"x)/2) - 2sin^2 ("b"x)/2)/(2sin^2 ("c"x)/2`
= `lim_(x -> 0) ((sin^2 (("a"x)/2) - sin^2 (("b"x)/2))/(x^2))/((sin^2 (("c"x)/2))/(x^2)) ...[("Divide numerator and denominator by" x^2),(because x -> 0"," therefore x ≠ 0 therefore x^2 ≠ 0)]`
= `(lim_(x -> 0) [(sin^2 (("a"x)/2))/x^2 - (sin^2(("b"x)/2))/x^2])/(lim_(x -> 0) (sin^2 (("c"x)/2))/x^2)`
= `(lim_(x -> 0) [(sin ("a"x)/2)/x]^2 - lim_(x -> 0) [(sin ("b"x)/2)/x]^2)/(lim_(x -> 0) [[sin ("c"x)/2)/x]^2`
= `(lim_(x -> 0) [(sin ("a"x)/2)/(("a"x)/2)]^2 * ("a"/2)^2 - lim_(x -> 0) [(sin ("b"x)/2)/(("b"x)/2)]^2 * ("b"/2)^2)/(lim_(x -> 0) [(sin ("c"x)/2)/(("c"x)/2)]^2 * ("c"/2)^2`
= `((1)^2 * "a"^2/4 - (1)^2 * "b"^2/4)/((1)^2 * "c"^2/4`
= `("a"^2/4 - "b"^2/4)/("c"^2/4)`
= `("a"^2 - "b"^2)/"c"^2`
APPEARS IN
RELATED QUESTIONS
Evaluate the following limit.
`lim_(x -> pi) (sin(pi - x))/(pi (pi - x))`
Evaluate the following limit.
`lim_(x -> 0) (cosec x - cot x)`
Evaluate the following limit :
`lim_(x ->0)((secx - 1)/x^2)`
Evaluate the following limit :
`lim_(x -> pi/4) [(cosx - sinx)/(cos2x)]`
Select the correct answer from the given alternatives.
`lim_(x -> 0) ((5sinx - xcosx)/(2tanx - 3x^2))` =
Select the correct answer from the given alternatives.
`lim_(x -> pi/2) [(3cos x + cos 3x)/(2x - pi)^3]` =
Evaluate `lim_(x -> 0) (sqrt(2 + x) - sqrt(2))/x`
Evaluate `lim_(x -> pi/6) (2sin^2x + sin x - 1)/(2sin^2 x - 3sin x + 1)`
Evaluate `lim_(x -> 0) (tanx - sinx)/(sin^3x)`
`lim_(x -> 0) sinx/(x(1 + cos x))` is equal to ______.
`lim_(x -> pi/2) (1 - sin x)/cosx` is equal to ______.
Evaluate: `lim_(x -> 3) (x^2 - 9)/(x - 3)`
Evaluate: `lim_(x -> 1/2) (4x^2 - 1)/(2x - 1)`
Evaluate: `lim_(x -> a) ((2 + x)^(5/2) - (a + 2)^(5/2))/(x - a)`
Evaluate: `lim_(x -> 1) (x^4 - sqrt(x))/(sqrt(x) - 1)`
Evaluate: `lim_(x -> sqrt(2)) (x^4 - 4)/(x^2 + 3sqrt(2x) - 8)`
Evaluate: `lim_(x -> 0) (sqrt(1 + x^3) - sqrt(1 - x^3))/x^2`
Evaluate: `lim_(x -> pi/4) (sin x - cosx)/(x - pi/4)`
Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`
Evaluate: `lim_(x -> a) (sin x - sin a)/(sqrt(x) - sqrt(a))`
Evaluate: `lim_(x -> 0) (sin x - 2 sin 3x + sin 5x)/x`
`lim_(x -> 0) ((sin(alpha + beta) x + sin(alpha - beta)x + sin 2alpha x))/(cos 2betax - cos 2alphax) * x`
Show that `lim_(x -> 4) |x - 4|/(x - 4)` does not exists
`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is ______.
`lim_(x -> 0) ((1 + x)^n - 1)/x` is equal to ______.
`lim_(x -> 1) (x^m - 1)/(x^n - 1)` is ______.
`lim_(x -> pi/4) (sec^2x - 2)/(tan x - 1)` is equal to ______.
`lim_(x -> 1) ((sqrt(x) - 1)(2x - 3))/(2x^2 + x - 3)` is ______.
`lim_(x -> 0) (tan 2x - x)/(3x - sin x)` is equal to ______.
`lim_(x -> 0) (sin mx cot x/sqrt(3))` = 2, then m = ______.
`lim_(x -> 3^+) x/([x])` = ______.
If L = `lim_(x→∞)(x^2sin 1/x - x)/(1 - |x|)`, then value of L is ______.
If `lim_(n→∞)sum_(k = 2)^ncos^-1(1 + sqrt((k - 1)(k + 2)(k + 1)k)/(k(k + 1))) = π/λ`, then the value of λ is ______.