Advertisements
Advertisements
Question
Evaluate: `lim_(x -> sqrt(2)) (x^4 - 4)/(x^2 + 3sqrt(2x) - 8)`
Solution
Given that `lim_(x -> sqrt(2)) (x^4 - 4)/(x^2 + 3sqrt(2x) - 8)`
= `lim_(x -> sqrt(2)) ((x^2 - 2)(x^2 + 2))/(x^2 + 4sqrt(2x) - sqrt(2x) - 8)`
= `lim_(x -> sqrt(2)) ((x + sqrt(2))(x - sqrt(2))(x^2 + 2))/(x(x + 4sqrt(2)) - sqrt(2)(x + 4sqrt(2))`
= `lim_(x -> sqrt(2)) ((x + sqrt(2))(x - sqrt(2))(x^2 + 2))/((x + 4sqrt(2))(x - sqrt(2))`
= `lim_(x -> sqrt(2)) ((x + sqrt(2))(x^2 + 2))/(x + 4sqrt(2))`
Taking limits we have
= `((sqrt(2) + sqrt(2))(2 + 2))/(sqrt(2) + 4sqrt(2))`
= `(2sqrt(2) xx 4)/(5sqrt(2))`
= `8/5`.
APPEARS IN
RELATED QUESTIONS
Evaluate the following limit.
`lim_(x ->0) cos x/(pi - x)`
Evaluate the following limit.
`lim_(x -> 0) (cos 2x -1)/(cos x - 1)`
Evaluate the following limit.
`lim_(x -> 0) (sin ax + bx)/(ax + sin bx) a, b, a+ b != 0`
Evaluate the following limit :
`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`
Select the correct answer from the given alternatives.
`lim_(x → π/3) ((tan^2x - 3)/(sec^3x - 8))` =
Evaluate the following :
`lim_(x -> "a") [(sinx - sin"a")/(x - "a")]`
Evaluate the following :
`lim_(x -> pi/4) [(sinx - cosx)^2/(sqrt(2) - sinx - cosx)]`
Evaluate `lim_(x -> 2) 1/(x - 2) - (2(2x - 3))/(x^3 - 3x^2 + 2x)`
`lim_(x -> pi/2) (1 - sin x)/cosx` is equal to ______.
`lim_(x -> 0) |x|/x` is equal to ______.
Evaluate: `lim_(x -> 3) (x^2 - 9)/(x - 3)`
Evaluate: `lim_(x -> 1) (x^4 - sqrt(x))/(sqrt(x) - 1)`
Evaluate: `lim_(x -> 1/2) (8x - 3)/(2x - 1) - (4x^2 + 1)/(4x^2 - 1)`
Evaluate: `lim_(x -> 0) (sin^2 2x)/(sin^2 4x)`
Evaluate: `lim_(x -> 0) (1 - cos 2x)/x^2`
Evaluate: `lim_(x -> pi/4) (sin x - cosx)/(x - pi/4)`
Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`
Evaluate: `lim_(x -> a) (sin x - sin a)/(sqrt(x) - sqrt(a))`
Evaluate: `lim_(x -> 0) (sqrt(2) - sqrt(1 + cos x))/(sin^2x)`
`(ax + b)/(cx + d)`
x cos x
`lim_(x -> 0) ((sin(alpha + beta) x + sin(alpha - beta)x + sin 2alpha x))/(cos 2betax - cos 2alphax) * x`
Show that `lim_(x -> 4) |x - 4|/(x - 4)` does not exists
`lim_(x -> 0) sinx/(sqrt(x + 1) - sqrt(1 - x)` is ______.
`lim_(x -> 0) (sin mx cot x/sqrt(3))` = 2, then m = ______.
If `lim_(x→∞) 1/(x + 1) tan((πx + 1)/(2x + 2)) = a/(π - b)(a, b ∈ N)`; then the value of a + b is ______.
The value of `lim_(x rightarrow 0) (4^x - 1)^3/(sin x^2/4 log(1 + 3x))`, is ______.