English

Evaluate: limx→1x4-xx-1 - Mathematics

Advertisements
Advertisements

Question

Evaluate: `lim_(x -> 1) (x^4 - sqrt(x))/(sqrt(x) - 1)`

Sum

Solution

Given that `lim_(x -> 1) (x^4 - sqrt(x))/(sqrt(x) - 1)`

= `lim_(x -> 1) (sqrt(x)[(x)^(7/2) - 1])/(sqrt(x) - 1)`

= `lim_(x -> 1) (sqrt(x) ([x^(7/2) - (1)^(7/2)])/(x - 1))/(((x)^(1/2) - (1)^(1/2))/(x - 1))`  .....[Dividing the numerator and denominator of x – 1]

= `lim_(x -> 1) (((x)^(7/2) - (1)^(7/2))/(x - 1))/(((x)^(1/2) - (1)^(1/2))/(x - 1)) xx lim_(x -> 1) sqrt(x)`  .....`[because  lim_(x -> a) f(x) g(x) - lim_(x -> a) f(x) * lim_(x -> a) g(x)]`

= `(7/2 (1)^*7/2 - 1)/(1/2(1)^(1/2 - 1)) xx sqrt(1)`

= `(7/2)/(1/2)`

= 7

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Exercise [Page 240]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Exercise | Q 7 | Page 240

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate the following limit.

`lim_(x → 0) x sec x`


Evaluate the following limit.

`lim_(x -> 0) (sin ax + bx)/(ax + sin bx) a, b, a+ b != 0`


Evaluate the following limit.

`lim_(x -> 0) (cosec x -  cot x)`


Evaluate the following limit :

`lim_(theta -> 0) [(sin("m"theta))/(tan("n"theta))]`


Evaluate the following limit :

`lim_(theta -> 0) [(1 - cos2theta)/theta^2]`


Evaluate the following limit :

`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`


Evaluate the following :

`lim_(x -> 0)[(secx^2 - 1)/x^4]`


Evaluate `lim_(x -> 0) (sqrt(2 + x) - sqrt(2))/x`


Evaluate `lim_(x -> pi/2) (secx - tanx)`


Evaluate `lim_(x -> 0) (tanx - sinx)/(sin^3x)`


`lim_(x -> 0) |x|/x` is equal to ______.


`lim_(x -> 1) [x - 1]`, where [.] is greatest integer function, is equal to ______.


Evaluate: `lim_(x -> 1/2) (4x^2 - 1)/(2x  - 1)`


Evaluate: `lim_(x -> a) ((2 + x)^(5/2) - (a + 2)^(5/2))/(x - a)`


Evaluate: `lim_(x -> 0) (sqrt(1 + x^3) - sqrt(1 - x^3))/x^2`


Evaluate: `lim_(x -> 0) (sin^2 2x)/(sin^2 4x)`


Evaluate: `lim_(x -> 0) (2 sin x - sin 2x)/x^3`


Evaluate: `lim_(x -> pi/6) (cot^2 x - 3)/("cosec"  x - 2)`


Evaluate: `lim_(x -> 0) (sqrt(2) - sqrt(1 + cos x))/(sin^2x)`


`lim_(y -> 0) ((x + y) sec(x + y) - x sec x)/y`


`lim_(x -> 0) ((1 + x)^n - 1)/x` is equal to ______.


`lim_(x -> 0) (1 - cos 4theta)/(1 - cos 6theta)` is ______.


`lim_(x -> 0) ("cosec" x - cot x)/x` is equal to ______.


`lim_(x -> 0) sinx/(sqrt(x + 1) - sqrt(1 - x)` is ______.


`lim_(x -> pi/4) (sec^2x - 2)/(tan x - 1)` is equal to ______.


`lim_(x -> 1) ((sqrt(x) - 1)(2x - 3))/(2x^2 + x - 3)` is ______.


`lim_(x -> 0) (tan 2x - x)/(3x - sin x)` is equal to ______.


If `f(x) = tanx/(x - pi)`, then `lim_(x -> pi) f(x)` = ______.


If `lim_(x→∞) 1/(x + 1) tan((πx + 1)/(2x + 2)) = a/(π - b)(a, b ∈ N)`; then the value of a + b is ______.


The value of `lim_(x rightarrow 0) (4^x - 1)^3/(sin  x^2/4 log(1 + 3x))`, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×