मराठी

Evaluate: limx→1x4-xx-1 - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: `lim_(x -> 1) (x^4 - sqrt(x))/(sqrt(x) - 1)`

बेरीज

उत्तर

Given that `lim_(x -> 1) (x^4 - sqrt(x))/(sqrt(x) - 1)`

= `lim_(x -> 1) (sqrt(x)[(x)^(7/2) - 1])/(sqrt(x) - 1)`

= `lim_(x -> 1) (sqrt(x) ([x^(7/2) - (1)^(7/2)])/(x - 1))/(((x)^(1/2) - (1)^(1/2))/(x - 1))`  .....[Dividing the numerator and denominator of x – 1]

= `lim_(x -> 1) (((x)^(7/2) - (1)^(7/2))/(x - 1))/(((x)^(1/2) - (1)^(1/2))/(x - 1)) xx lim_(x -> 1) sqrt(x)`  .....`[because  lim_(x -> a) f(x) g(x) - lim_(x -> a) f(x) * lim_(x -> a) g(x)]`

= `(7/2 (1)^*7/2 - 1)/(1/2(1)^(1/2 - 1)) xx sqrt(1)`

= `(7/2)/(1/2)`

= 7

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Limits and Derivatives - Exercise [पृष्ठ २४०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 13 Limits and Derivatives
Exercise | Q 7 | पृष्ठ २४०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate the following limit.

`lim_(x -> 0) (cos 2x -1)/(cos x - 1)`


Evaluate the following limit.

`lim_(x -> 0) (ax +  xcos x)/(b sin x)`


Evaluate the following limit.

`lim_(x → 0) x sec x`


Evaluate the following limit :

`lim_(theta -> 0) [(sin("m"theta))/(tan("n"theta))]`


Evaluate the following limit :

`lim_(x -> 0)[(1 - cos("n"x))/(1 - cos("m"x))]`


Evaluate the following limit :

`lim_(x -> pi/4) [(cosx - sinx)/(cos2x)]`


Evaluate the following limit :

`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`


Evaluate the following limit :

`lim_(x -> pi/6) [(2sin^2x + sinx - 1)/(2sin^2x - 3sinx + 1)]`


Select the correct answer from the given alternatives.

`lim_(x -> pi/2) [(3cos x + cos 3x)/(2x - pi)^3]` =


Evaluate the following :

`lim_(x -> 0)[(secx^2 - 1)/x^4]`


Evaluate the following :

`lim_(x -> 0) [(x(6^x - 3^x))/(cos (6x) - cos (4x))]`


`lim_{x→-5} (sin^-1(x + 5))/(x^2 + 5x)` is equal to ______ 


Evaluate `lim_(x -> 0)  (sin(2 + x) - sin(2 - x))/x`


Evaluate `lim_(x -> 0) (tanx - sinx)/(sin^3x)`


`lim_(x -> 1) [x - 1]`, where [.] is greatest integer function, is equal to ______.


Evaluate: `lim_(x -> 3) (x^2 - 9)/(x - 3)`


Evaluate: `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)`


Evaluate: `lim_(x -> 0) (sqrt(1 + x^3) - sqrt(1 - x^3))/x^2`


Evaluate: `lim_(x -> 3) (x^3 + 27)/(x^5 + 243)`


Evaluate: `lim_(x -> 1/2) (8x - 3)/(2x - 1) - (4x^2 + 1)/(4x^2 - 1)`


Evaluate: `lim_(x -> a) (sin x - sin a)/(sqrt(x) - sqrt(a))`


`(ax + b)/(cx + d)`


`x^(2/3)`


`lim_(x -> pi) (1 - sin  x/2)/(cos  x/2 (cos  x/4 - sin  x/4))`


`lim_(x -> 0) |sinx|/x` is ______.


If L = `lim_(x→∞)(x^2sin  1/x - x)/(1 - |x|)`, then value of L is ______.


The value of `lim_(x rightarrow 0) (4^x - 1)^3/(sin  x^2/4 log(1 + 3x))`, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×