Advertisements
Advertisements
प्रश्न
Evaluate: `lim_(x -> 1) (x^4 - sqrt(x))/(sqrt(x) - 1)`
उत्तर
Given that `lim_(x -> 1) (x^4 - sqrt(x))/(sqrt(x) - 1)`
= `lim_(x -> 1) (sqrt(x)[(x)^(7/2) - 1])/(sqrt(x) - 1)`
= `lim_(x -> 1) (sqrt(x) ([x^(7/2) - (1)^(7/2)])/(x - 1))/(((x)^(1/2) - (1)^(1/2))/(x - 1))` .....[Dividing the numerator and denominator of x – 1]
= `lim_(x -> 1) (((x)^(7/2) - (1)^(7/2))/(x - 1))/(((x)^(1/2) - (1)^(1/2))/(x - 1)) xx lim_(x -> 1) sqrt(x)` .....`[because lim_(x -> a) f(x) g(x) - lim_(x -> a) f(x) * lim_(x -> a) g(x)]`
= `(7/2 (1)^*7/2 - 1)/(1/2(1)^(1/2 - 1)) xx sqrt(1)`
= `(7/2)/(1/2)`
= 7
APPEARS IN
संबंधित प्रश्न
Evaluate the following limit.
`lim_(x -> 0) (cos 2x -1)/(cos x - 1)`
Evaluate the following limit.
`lim_(x -> 0) (ax + xcos x)/(b sin x)`
Evaluate the following limit.
`lim_(x → 0) x sec x`
Evaluate the following limit :
`lim_(theta -> 0) [(sin("m"theta))/(tan("n"theta))]`
Evaluate the following limit :
`lim_(x -> 0)[(1 - cos("n"x))/(1 - cos("m"x))]`
Evaluate the following limit :
`lim_(x -> pi/4) [(cosx - sinx)/(cos2x)]`
Evaluate the following limit :
`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`
Evaluate the following limit :
`lim_(x -> pi/6) [(2sin^2x + sinx - 1)/(2sin^2x - 3sinx + 1)]`
Select the correct answer from the given alternatives.
`lim_(x -> pi/2) [(3cos x + cos 3x)/(2x - pi)^3]` =
Evaluate the following :
`lim_(x -> 0)[(secx^2 - 1)/x^4]`
Evaluate the following :
`lim_(x -> 0) [(x(6^x - 3^x))/(cos (6x) - cos (4x))]`
`lim_{x→-5} (sin^-1(x + 5))/(x^2 + 5x)` is equal to ______
Evaluate `lim_(x -> 0) (sin(2 + x) - sin(2 - x))/x`
Evaluate `lim_(x -> 0) (tanx - sinx)/(sin^3x)`
`lim_(x -> 1) [x - 1]`, where [.] is greatest integer function, is equal to ______.
Evaluate: `lim_(x -> 3) (x^2 - 9)/(x - 3)`
Evaluate: `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)`
Evaluate: `lim_(x -> 0) (sqrt(1 + x^3) - sqrt(1 - x^3))/x^2`
Evaluate: `lim_(x -> 3) (x^3 + 27)/(x^5 + 243)`
Evaluate: `lim_(x -> 1/2) (8x - 3)/(2x - 1) - (4x^2 + 1)/(4x^2 - 1)`
Evaluate: `lim_(x -> a) (sin x - sin a)/(sqrt(x) - sqrt(a))`
`(ax + b)/(cx + d)`
`x^(2/3)`
`lim_(x -> pi) (1 - sin x/2)/(cos x/2 (cos x/4 - sin x/4))`
`lim_(x -> 0) |sinx|/x` is ______.
If L = `lim_(x→∞)(x^2sin 1/x - x)/(1 - |x|)`, then value of L is ______.
The value of `lim_(x rightarrow 0) (4^x - 1)^3/(sin x^2/4 log(1 + 3x))`, is ______.