Advertisements
Advertisements
प्रश्न
Evaluate: `lim_(x -> 2) (x^2 - 4)/(sqrt(3x - 2) - sqrt(x + 2))`
उत्तर
Given that `lim_(x -> 2) (x^2 - 4)/(sqrt(3x - 2) - sqrt(x + 2))`
Rationalizing the denominator, we get
= `lim_(x -> 2) ((x - 2)(x + 2) [sqrt(3x - 2) + sqrt(x + 2)])/([sqrt(3x - 2) - sqrt(x + 2)][sqrt(3x - 2) + sqrt(x + 2)])`
= `lim_(x -> 2) ((x - 2)(x + 2)[sqrt(3x - 2) + sqrt(x + 2)])/(3x - 2 - x - 2)`
= `lim_(x -> 2) ((x - 2)(x + 2)[sqrt((3x - 2)) + sqrt(x + 2)])/(2x - 4)`
= `lim_(x -> 2) ((x - 2)(x + 2) [sqrt((3x - 2)) + sqrt(x + 2)])/(2(x - 2))`
= `lim_(x -> 2) ((x + 2)[sqrt(3x - 2) + sqrt(x + 2)])/2`
Taking limits, we have
`= ((2 + 2)[sqrt(6 - 2) + sqrt(2 + 2)])/2`
= `(4[2 + 2])/2`
= `(4 xx 4)/2`
= 8
APPEARS IN
संबंधित प्रश्न
Find `lim_(x -> 0)` f(x) and `lim_(x -> 1)` f(x) where f(x) = `{(2x + 3, x <= 0),(3(x+1), x > 0):}`
if `f(x) = { (mx^2 + n, x < 0),(nx + m, 0<= x <= 1),(nx^3 + m, x > 1):}`
For what integers m and n does `lim_(x-> 0) f(x)` and `lim_(x -> 1) f(x)` exist?
\[\lim_{x \to 0} \frac{\sqrt{a^2 + x^2} - a}{x^2}\]
\[\lim_{x \to 3} \frac{x - 3}{\sqrt{x - 2} - \sqrt{4 - x}}\]
\[\lim_{x \to 0} \frac{x}{\sqrt{1 + x} - \sqrt{1 - x}}\]
\[\lim_{x \to 3} \frac{\sqrt{x + 3} - \sqrt{6}}{x^2 - 9}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x}\]
\[\lim_{x \to 2} \frac{\sqrt{x^2 + 1} - \sqrt{5}}{x - 2}\]
\[\lim_{x \to 2} \frac{x - 2}{\sqrt{x} - \sqrt{2}}\]
\[\lim_{x \to 0} \frac{\sqrt{a + x} - \sqrt{a}}{x\sqrt{a^2 + ax}}\]
\[\lim_{x \to 0} \frac{\sqrt{2 - x} - \sqrt{2 + x}}{x}\]
\[\lim_{x \to 0} \frac{a^x + b^x - 2}{x}\]
\[\lim_{x \to 0} \frac{a^{mx} - b^{nx}}{x}\]
\[\lim_{x \to \infty} \left( a^{1/x} - 1 \right)x\]
\[\lim_{x \to 0} \frac{a^{mx} - b^{nx}}{\sin kx}\]
\[\lim_{x \to a} \frac{\log x - \log a}{x - a}\]
\[\lim_{x \to 0} \frac{\log \left( 2 + x \right) + \log 0 . 5}{x}\]
\[\lim_{x \to 0} \frac{x\left( 2^x - 1 \right)}{1 - \cos x}\]
`\lim_{x \to \pi/2} \frac{a^\cot x - a^\cos x}{\cot x - \cos x}`
\[\lim_{x \to 0} \frac{e^x - 1}{\sqrt{1 - \cos x}}\]
\[\lim_{x \to 0} \frac{e^{3x} - e^{2x}}{x}\]
\[\lim_{x \to \pi/2} \frac{2^{- \cos x} - 1}{x\left( x - \frac{\pi}{2} \right)}\]
Write the value of \[\lim_{x \to - \infty} \left( 3x + \sqrt{9 x^2 - x} \right) .\]