मराठी

Lim X → 0 E X − 1 √ 1 − Cos X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\lim_{x \to 0} \frac{e^x - 1}{\sqrt{1 - \cos x}}\]

उत्तर

\[\lim_{x \to 0} \left[ \frac{e^x - 1}{\sqrt{1 - \cos x}} \right]\]
\[\text{ Rationalising the denominator, we get }: \]
\[ = \lim_{x \to 0} \left[ \frac{\left( e^x - 1 \right)}{\sqrt{1 - \cos x}} \times \frac{\sqrt{1 + \cos x}}{\sqrt{1 + \cos x}} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\left( e^x - 1 \right) \left( \sqrt{1 + \cos x} \right)}{\sqrt{1 - \cos^2 x}} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\left( e^x - 1 \right) \sqrt{1 + \cos x}}{\left| \sin x \right|} \right]\]

Dividing numerator and the denominator by x, we get:

\[= \lim_{x \to 0} \left[ \left( \frac{e^x - 1}{x} \right) \times \frac{\sqrt{1 + \cos x}}{\left( \frac{\left| \sin x \right|}{x} \right)} \right]\]
\[\text{ Left hand limit }: \]
\[ \lim_{x \to 0^-} \left[ \left( \frac{e^x - 1}{x} \right) \times \frac{\sqrt{1 + \cos x}}{\left( \frac{\left| \sin x \right|}{x} \right)} \right]\]
\[ = \lim_{x \to 0^-} \left[ \left( \frac{e^x - 1}{x} \right) \times \frac{\sqrt{1 + \cos x}}{\left( \frac{- \sin x}{x} \right)} \right]\]
\[ = - \frac{1 \times \sqrt{2}}{1}\]
\[ = - \sqrt{2}\]
\[\text{ Right hand limit }: \]
\[ \lim_{x \to 0^+} \left[ \left( \frac{e^x - 1}{x} \right) \times \frac{\sqrt{1 + \cos x}}{\frac{\left| \sin x \right|}{x}} \right]\]
\[ = \lim_{x \to 0^+} \left[ \left( \frac{e^x - 1}{x} \right) \times \frac{\sqrt{1 + \cos x}}{\frac{\sin x}{x}} \right]\]
\[ = 1 \times \frac{\sqrt{2}}{1}\]
\[ = \sqrt{2}\]

Left hand limit ≠ Right hand limit
Thus, limit does not exist.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 29: Limits - Exercise 29.1 [पृष्ठ ७१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 29 Limits
Exercise 29.1 | Q 29 | पृष्ठ ७१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find `lim_(x -> 0)` f(x) and `lim_(x -> 1)` f(x) where f(x) = `{(2x + 3, x <= 0),(3(x+1), x > 0):}`


Find `lim_(x -> 1)` f(x), where `f(x) = {(x^2 -1, x <= 1), (-x^2 -1, x > 1):}`


Find `lim_(x -> 0)` f(x), where `f(x) = {(x/|x|, x != 0),(0, x = 0):}`


If the function f(x) satisfies `lim_(x -> 1) (f(x) - 2)/(x^2 - 1) = pi`, evaluate `lim_(x -> 1) f(x)`.


\[\lim_{x \to 0} \frac{2x}{\sqrt{a + x} - \sqrt{a - x}}\] 


\[\lim_{x \to 7} \frac{4 - \sqrt{9 + x}}{1 - \sqrt{8 - x}}\] 


\[\lim_{x \to 0} \frac{\sqrt{a + x} - \sqrt{a}}{x\sqrt{a^2 + ax}}\]


\[\lim_{x \to 4} \frac{2 - \sqrt{x}}{4 - x}\]


\[\lim_{x \to 0} \frac{\sqrt{1 + 3x} - \sqrt{1 - 3x}}{x}\]


\[\lim_{x \to 0} \frac{\sqrt{2 - x} - \sqrt{2 + x}}{x}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 + x}}{\sqrt{1 + x^3} - \sqrt{1 + x}}\] 


\[\lim_{h \to 0} \frac{\sqrt{x + h} - \sqrt{x}}{h}, x \neq 0\] 


\[\lim_{x \to 0} \frac{5^x - 1}{\sqrt{4 + x} - 2}\]


\[\lim_{x \to 0} \frac{a^x + a^{- x} - 2}{x^2}\]


\[\lim_{x \to 0} \frac{a^{mx} - 1}{b^{nx} - 1}, n \neq 0\]


\[\lim_{x \to 0} \frac{9^x - 2 . 6^x + 4^x}{x^2}\] 


\[\lim_{x \to 0} \frac{a^{mx} - b^{nx}}{x}\] 


\[\lim_{x \to 0} \frac{a^x + b^x + c^x - 3}{x}\] 


\[\lim_{x \to 0} \frac{5^x + 3^x + 2^x - 3}{x}\]


\[\lim_{x \to 0} \frac{\log \left( 2 + x \right) + \log 0 . 5}{x}\]


\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{\log \left( 1 + x \right)}\] 


\[\lim_{x \to 5} \frac{e^x - e^5}{x - 5}\]


\[\lim_{x \to 0} \frac{e^{x + 2} - e^2}{x}\] 


\[\lim_{x \to 0} \frac{e^x - x - 1}{2}\] 


\[\lim_{x \to 0} \frac{e^{3x} - e^{2x}}{x}\] 


`\lim_{x \to 0} \frac{e^x - e^\sin x}{x - \sin x}`


\[\lim_{x \to 0} \frac{3^{2 + x} - 9}{x}\]


\[\lim_{x \to 0} \frac{a^x - a^{- x}}{x}\]


\[\lim_{x \to 0} \frac{x\left( e^x - 1 \right)}{1 - \cos x}\]


\[\lim_{x \to \pi/2} \frac{2^{- \cos x} - 1}{x\left( x - \frac{\pi}{2} \right)}\]


\[\lim_{x \to 0} \left\{ \frac{e^x + e^{- x} - 2}{x^2} \right\}^{1/ x^2}\]


\[\lim_{x \to 0} \left\{ \frac{e^x + e^{- x} - 2}{x^2} \right\}^{1/ x^2}\]


\[\lim_{x \to a} \left\{ \frac{\sin x}{\sin a} \right\}^\frac{1}{x - a}\]


\[\lim_{x \to 0} \frac{\sin x}{\sqrt{1 + x} - 1} .\] 


Write the value of \[\lim_{x \to \pi/2} \frac{2x - \pi}{\cos x} .\] 


Let f(x) be a polynomial of degree 4 having extreme values at x = 1 and x = 2. If `lim_(x rightarrow 0) ((f(x))/x^2 + 1)` = 3 then f(–1) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×