मराठी

Lim X → 0 { E X + E − X − 2 X 2 } 1 / X 2 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\lim_{x \to 0} \left\{ \frac{e^x + e^{- x} - 2}{x^2} \right\}^{1/ x^2}\]

उत्तर

\[\lim_{x \to 0} \left[ \frac{e^x + e^{- x} - 2}{x^2} \right]^\left( \frac{1}{x^2} \right) \]
\[ = \lim_{x \to 0} \left[ 1 + \frac{e^x + e^{- x} - 2}{x^2} - 1 \right]^\left( \frac{1}{x^2} \right) \]
\[ = e {}^\lim_{x \to 0} \left( \frac{e^x + e^{- x} - 2}{x^2} - 1 \right) \times \left( \frac{1}{x^2} \right) \]
\[ \because e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . . . . . \propto \]
\[ e^{- x} = 1 - \frac{x}{1!} + \frac{x^2}{2!} - \frac{x^3}{3!} + . . . . . . \propto \]
\[ \Rightarrow e^x + e^{- x} = 2 + \frac{2 x^2}{2!} + \frac{2 x^4}{4!} + . . . . . \propto \]
\[ = e^\lim_{x \to 0} \left( \frac{2 + \frac{2 x^2}{2!} + \frac{2 x^4}{4!} . . . \propto - 2}{x^2} - 1 \right) \times \left( \frac{1}{x^2} \right) \]
\[ = e^\lim_{x \to 0} \left( \frac{\frac{2 x^2}{2!} + \frac{2 x^4}{4!} + . . . . . . \propto}{x^4} - \frac{1}{x^2} \right) \]
\[ = e^\lim_{x \to 0} \left( \frac{x^2 + \frac{x^4}{12} + . . . . . \propto - x^2}{x^4} \right) \]
\[ = e^\frac{1}{12}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 29: Limits - Exercise 29.12 [पृष्ठ ७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 29 Limits
Exercise 29.12 | Q 8 | पृष्ठ ७७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Let a1, a2,..., an be fixed real numbers and define a function f ( x) = ( x − a1 ) ( x − a2 )...( x − an ).

What is `lim_(x -> a_1) f(x)` ? For some a ≠ a1, a2, ..., an, compute `lim_(x -> a) f(x)`


\[\lim_{x \to 1} \frac{x - 1}{\sqrt{x^2 + 3 - 2}}\] 


\[\lim_{x \to 5} \frac{x - 5}{\sqrt{6x - 5} - \sqrt{4x + 5}}\] 


\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x^3 - 1}\] 


\[\lim_{x \to 2} \frac{\sqrt{1 + 4x} - \sqrt{5 + 2x}}{x - 2}\] 


\[\lim_{x \to 1} \frac{\sqrt{3 + x} - \sqrt{5 - x}}{x^2 - 1}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{x}\] 


\[\lim_{x \to 0} \frac{\sqrt{2 - x} - \sqrt{2 + x}}{x}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 + x}}{\sqrt{1 + x^3} - \sqrt{1 + x}}\] 


\[\lim_{x \to 0} \frac{a^{mx} - 1}{b^{nx} - 1}, n \neq 0\]


\[\lim_{x \to 0} \frac{9^x - 2 . 6^x + 4^x}{x^2}\] 


\[\lim_{x \to 0} \frac{8^x - 4^x - 2^x + 1}{x^2}\]


\[\lim_{x \to 0} \frac{a^{mx} - b^{nx}}{x}\] 


\[\lim_{x \to 0} \frac{a^x + b^x + c^x - 3}{x}\] 


\[\lim_{x \to \infty} \left( a^{1/x} - 1 \right)x\]


\[\lim_{x \to 0} \frac{e^x - 1 + \sin x}{x}\]


\[\lim_{x \to 0} \frac{\sin 2x}{e^x - 1}\] 


\[\lim_{x \to 0} \frac{e\sin x - 1}{x}\] 


\[\lim_{x \to 0} \frac{e^{2x} - e^x}{\sin 2x}\]


\[\lim_{x \to a} \frac{\log x - \log a}{x - a}\] 


\[\lim_{x \to 5} \frac{e^x - e^5}{x - 5}\]


\[\lim_{x \to 0} \frac{e^{x + 2} - e^2}{x}\] 


\[\lim_{x \to 0} \frac{e^{3 + x} - \sin x - e^3}{x}\] 


\[\lim_{x \to 0} \frac{e^x - x - 1}{2}\] 


\[\lim_{x \to 0} \frac{e^{bx} - e^{ax}}{x} \text{ where } 0 < a < b\] 


`\lim_{x \to 0} \frac{e^\tan x - 1}{x}`


`\lim_{x \to 0} \frac{e^x - e^\sin x}{x - \sin x}`


\[\lim_{x \to 0} \frac{x\left( e^x - 1 \right)}{1 - \cos x}\]


\[\lim_{x \to \infty} \left\{ \frac{x^2 + 2x + 3}{2 x^2 + x + 5} \right\}^\frac{3x - 2}{3x + 2}\]


\[\lim_{x \to 1} \left\{ \frac{x^3 + 2 x^2 + x + 1}{x^2 + 2x + 3} \right\}^\frac{1 - \cos \left( x - 1 \right)}{\left( x - 1 \right)^2}\]


\[\lim_{x \to a} \left\{ \frac{\sin x}{\sin a} \right\}^\frac{1}{x - a}\]


\[\lim_{x \to a} \left\{ \frac{\sin x}{\sin a} \right\}^\frac{1}{x - a}\]


Write the value of \[\lim_{n \to \infty} \frac{1 + 2 + 3 + . . . + n}{n^2} .\]


Evaluate: `lim_(h -> 0) (sqrt(x + h) - sqrt(x))/h`


Let f(x) be a polynomial of degree 4 having extreme values at x = 1 and x = 2. If `lim_(x rightarrow 0) ((f(x))/x^2 + 1)` = 3 then f(–1) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×