मराठी

Lim X → 5 X − 5 √ 6 X − 5 − √ 4 X + 5 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\lim_{x \to 5} \frac{x - 5}{\sqrt{6x - 5} - \sqrt{4x + 5}}\] 

उत्तर

\[\lim_{x \to 5} \left[ \frac{x - 5}{\sqrt{6x - 5} - \sqrt{4x + 5}} \right]\] It is of the form \[\frac{0}{0}\] 

Rationalising the denominator: 

\[\lim_{x \to 5} \left[ \frac{\left( x - 5 \right) \left( \sqrt{6x - 5} + \sqrt{4x + 5} \right)}{\left( \sqrt{6x - 5} - \sqrt{4x + 5} \right) \left( \sqrt{6x - 5} + \sqrt{4x + 5} \right)} \right]\] 

=  \[\lim_{x \to 5} \left[ \frac{\left( x - 5 \right) \left( \sqrt{6x - 5} + \sqrt{4x + 5} \right)}{\left( 6x - 5 \right) - \left( 4x + 5 \right)} \right]\] 

=  \[\lim_{x \to 5} \left[ \frac{\left( x - 5 \right) \left( \sqrt{6x - 5} + \sqrt{4x + 5} \right)}{2x - 10} \right]\] 

=\[\lim_{x \to 5} \left[ \frac{\left( x - 5 \right)\left( \sqrt{6x - 5} + \sqrt{4x + 5} \right)}{2\left( x - 5 \right)} \right]\] 

=  \[\frac{\sqrt{6 \times 5 - 5} + \sqrt{4 \times 5 + 5}}{2}\] 

= \[\frac{5 + 5}{2}\] 

= 5

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 29: Limits - Exercise 29.4 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 29 Limits
Exercise 29.4 | Q 17 | पृष्ठ २८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find `lim_(x -> 0)` f(x), where `f(x) = {(x/|x|, x != 0),(0, x = 0):}`


\[\lim_{x \to 0} \frac{\sqrt{1 + x + x^2} - 1}{x}\]


\[\lim_{x \to 0} \frac{\sqrt{a^2 + x^2} - a}{x^2}\] 


\[\lim_{x \to 2} \frac{\sqrt{3 - x} - 1}{2 - x}\] 


\[\lim_{x \to 3} \frac{x - 3}{\sqrt{x - 2} - \sqrt{4 - x}}\] 


\[\lim_{x \to 1} \frac{x - 1}{\sqrt{x^2 + 3 - 2}}\] 


\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x^2 - 1}\] 


\[\lim_{x \to 2} \frac{\sqrt{x^2 + 1} - \sqrt{5}}{x - 2}\] 


\[\lim_{x \to 7} \frac{4 - \sqrt{9 + x}}{1 - \sqrt{8 - x}}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{x}\] 


\[\lim_{x \to 4} \frac{2 - \sqrt{x}}{4 - x}\]


\[\lim_{x \to 0} \frac{\sqrt{1 + 3x} - \sqrt{1 - 3x}}{x}\]


\[\lim_{x \to 1} \frac{\left( 2x - 3 \right) \left( \sqrt{x} - 1 \right)}{3 x^2 + 3x - 6}\]


\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 + x}}{\sqrt{1 + x^3} - \sqrt{1 + x}}\] 


\[\lim_{x \to 1} \frac{ x^2 - \sqrt{x}}{\sqrt{x} - 1}\]


\[\lim_{x \to \sqrt{2}} \frac{\sqrt{3 + 2x} - \left( \sqrt{2} + 1 \right)}{x^2 - 2}\] 


\[\lim_{x \to 0} \frac{\log \left( 1 + x \right)}{3^x - 1}\]


\[\lim_{x \to 0} \frac{a^x + a^{- x} - 2}{x^2}\]


\[\lim_{x \to 0} \frac{a^{mx} - 1}{b^{nx} - 1}, n \neq 0\]


\[\lim_{x \to 0} \frac{a^x + b^x + c^x - 3}{x}\] 


\[\lim_{x \to 0} \frac{a^{mx} - b^{nx}}{\sin kx}\]


\[\lim_{x \to a} \frac{\log x - \log a}{x - a}\] 


\[\lim_{x \to 0} \frac{\log \left( 2 + x \right) + \log 0 . 5}{x}\]


`\lim_{x \to \pi/2} \frac{e^\cos x - 1}{\cos x}`


\[\lim_{x \to 0} \frac{e^{3 + x} - \sin x - e^3}{x}\] 


`\lim_{x \to 0} \frac{e^\tan x - 1}{x}`


\[\lim_{x \to 0} \frac{x\left( e^x - 1 \right)}{1 - \cos x}\]


\[\lim_{x \to \infty} \left\{ \frac{x^2 + 2x + 3}{2 x^2 + x + 5} \right\}^\frac{3x - 2}{3x + 2}\]


Write the value of \[\lim_{x \to - \infty} \left( 3x + \sqrt{9 x^2 - x} \right) .\]


Write the value of \[\lim_{n \to \infty} \frac{1 + 2 + 3 + . . . + n}{n^2} .\]


Let f(x) be a polynomial of degree 4 having extreme values at x = 1 and x = 2. If `lim_(x rightarrow 0) ((f(x))/x^2 + 1)` = 3 then f(–1) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×