हिंदी

Lim X → 5 X − 5 √ 6 X − 5 − √ 4 X + 5 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\lim_{x \to 5} \frac{x - 5}{\sqrt{6x - 5} - \sqrt{4x + 5}}\] 

उत्तर

\[\lim_{x \to 5} \left[ \frac{x - 5}{\sqrt{6x - 5} - \sqrt{4x + 5}} \right]\] It is of the form \[\frac{0}{0}\] 

Rationalising the denominator: 

\[\lim_{x \to 5} \left[ \frac{\left( x - 5 \right) \left( \sqrt{6x - 5} + \sqrt{4x + 5} \right)}{\left( \sqrt{6x - 5} - \sqrt{4x + 5} \right) \left( \sqrt{6x - 5} + \sqrt{4x + 5} \right)} \right]\] 

=  \[\lim_{x \to 5} \left[ \frac{\left( x - 5 \right) \left( \sqrt{6x - 5} + \sqrt{4x + 5} \right)}{\left( 6x - 5 \right) - \left( 4x + 5 \right)} \right]\] 

=  \[\lim_{x \to 5} \left[ \frac{\left( x - 5 \right) \left( \sqrt{6x - 5} + \sqrt{4x + 5} \right)}{2x - 10} \right]\] 

=\[\lim_{x \to 5} \left[ \frac{\left( x - 5 \right)\left( \sqrt{6x - 5} + \sqrt{4x + 5} \right)}{2\left( x - 5 \right)} \right]\] 

=  \[\frac{\sqrt{6 \times 5 - 5} + \sqrt{4 \times 5 + 5}}{2}\] 

= \[\frac{5 + 5}{2}\] 

= 5

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: Limits - Exercise 29.4 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 29 Limits
Exercise 29.4 | Q 17 | पृष्ठ २८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 - x}}{2x}\]


\[\lim_{x \to 2} \frac{\sqrt{3 - x} - 1}{2 - x}\] 


\[\lim_{x \to 3} \frac{\sqrt{x + 3} - \sqrt{6}}{x^2 - 9}\] 


\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x^3 - 1}\] 


\[\lim_{x \to 2} \frac{\sqrt{1 + 4x} - \sqrt{5 + 2x}}{x - 2}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{x}\] 


\[\lim_{x \to 4} \frac{2 - \sqrt{x}}{4 - x}\]


\[\lim_{x \to 0} \frac{\sqrt{2 - x} - \sqrt{2 + x}}{x}\] 


\[\lim_{x \to \sqrt{10}} \frac{\sqrt{7 + 2x} - \left( \sqrt{5} + \sqrt{2} \right)}{x^2 - 10}\] 


\[\lim_{x \to 0} \frac{\log \left( 1 + x \right)}{3^x - 1}\]


\[\lim_{x \to 0} \frac{8^x - 4^x - 2^x + 1}{x^2}\]


\[\lim_{x \to 0} \frac{a^x + b^x + c^x - 3}{x}\] 


\[\lim_{x \to 0} \frac{5^x + 3^x + 2^x - 3}{x}\]


\[\lim_{x \to 0} \frac{a^x + b^ x - c^x - d^x}{x}\]


\[\lim_{x \to 0} \frac{e\sin x - 1}{x}\] 


\[\lim_{x \to 0} \frac{\log \left( 2 + x \right) + \log 0 . 5}{x}\]


\[\lim_{x \to 0} \frac{x\left( 2^x - 1 \right)}{1 - \cos x}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{\log \left( 1 + x \right)}\] 


`\lim_{x \to \pi/2} \frac{a^\cot x - a^\cos x}{\cot x - \cos x}`


\[\lim_{x \to 0} \frac{e^{3 + x} - \sin x - e^3}{x}\] 


\[\lim_{x \to 0} \frac{e^x - x - 1}{2}\] 


`\lim_{x \to 0} \frac{e^\tan x - 1}{\tan x}`


`\lim_{x \to 0} \frac{e^\tan x - 1}{x}`


\[\lim_{x \to 0} \frac{3^{2 + x} - 9}{x}\]


\[\lim_{x \to 0} \frac{a^x - a^{- x}}{x}\]


\[\lim_{x \to 0} \left\{ \frac{e^x + e^{- x} - 2}{x^2} \right\}^{1/ x^2}\]


\[\lim_{x \to a} \left\{ \frac{\sin x}{\sin a} \right\}^\frac{1}{x - a}\]


\[\lim_{x \to 0} \left\{ \frac{e^x + e^{- x} - 2}{x^2} \right\}^{1/ x^2}\]


Write the value of \[\lim_{n \to \infty} \frac{1 + 2 + 3 + . . . + n}{n^2} .\]


Evaluate: `lim_(h -> 0) (sqrt(x + h) - sqrt(x))/h`


Evaluate: `lim_(x -> 2) (x^2 - 4)/(sqrt(3x - 2) - sqrt(x + 2))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×