हिंदी

Lim X → √ 10 √ 7 + 2 X − ( √ 5 + √ 2 ) X 2 − 10 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\lim_{x \to \sqrt{10}} \frac{\sqrt{7 + 2x} - \left( \sqrt{5} + \sqrt{2} \right)}{x^2 - 10}\] 

उत्तर

\[\lim_{x \to \sqrt{10}} \left[ \frac{\sqrt{7 + 2x} - \left( \sqrt{5} + \sqrt{2} \right)}{x^2 - \left( \sqrt{10} \right)^2} \right]\] 

= \[\lim_{x \to \sqrt{10}} \left[ \frac{\sqrt{7 + 2x} - \sqrt{\left( \sqrt{5} + \sqrt{2} \right)^2}}{\left( x - \sqrt{10} \right)\left( x + \sqrt{10} \right)} \right]\]

=  \[\lim_{x \to \sqrt{10}} \left[ \frac{\sqrt{7 + 2x} - \sqrt{5 + 2 + 2\sqrt{5}\sqrt{2}}}{\left( x - \sqrt{10} \right)\left( x + \sqrt{10} \right)} \right]\] 

=  \[\lim_{x \to \sqrt{10}} \left[ \frac{\sqrt{7 + 2x} - \sqrt{7 + 2\sqrt{10}}}{\left( x - \sqrt{10} \right)\left( x + \sqrt{10} \right)} \right]\] 

Rationalising the numerator:

\[\lim_{x \to \sqrt{10}} \left[ \frac{\left( \sqrt{7 + 2x} - \sqrt{7 + 2\sqrt{10}} \right) \left( \sqrt{7 + 2x} + \sqrt{7 + 2\sqrt{10}} \right)}{\left( x - \sqrt{10} \right)\left( x + \sqrt{10} \right) \left( \sqrt{7 + 2x} + \sqrt{7 + 2\sqrt{10}} \right)} \right]\] 

= \[\lim_{x \to \sqrt{10}} \left[ \frac{\left( 7 + 2x \right) - \left( 7 + 2\sqrt{10} \right)}{\left( x - \sqrt{10} \right)\left( x + \sqrt{10} \right) \left( \sqrt{7 + 2x} + \sqrt{7 + 2\sqrt{10}} \right)} \right]\]

=  \[\lim_{x \to \sqrt{10}} \left[ \frac{2\left( x - \sqrt{10} \right)}{\left( x - \sqrt{10} \right)\left( x + \sqrt{10} \right) \left( \sqrt{7 + 2x} + \sqrt{7 + 2\sqrt{10}} \right)} \right]\] 

=  \[\frac{2}{\left( \sqrt{10} + \sqrt{10} \right) \left( 2\sqrt{7 + 2\sqrt{10}} \right)}\] 

\[= \frac{2}{\left( 2\sqrt{10} \right) \times 2\sqrt{7 + 2\sqrt{10}}}\]
\[ = \frac{1}{2\sqrt{10}\sqrt{\left( \sqrt{5} + \sqrt{2} \right)^2}}\] 

=  \[\frac{1}{2\sqrt{10}\left( \sqrt{5} + \sqrt{2} \right)} \times \frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} - \sqrt{2}}\] 

\[= \frac{1}{2\sqrt{10}}\left[ \frac{\sqrt{5} - \sqrt{2}}{\left( \sqrt{5} \right)^2 - \left( \sqrt{2} \right)^2} \right]\]
= \[\frac{\sqrt{5} - \sqrt{2}}{6\sqrt{10}}\] 

 

 

 

 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: Limits - Exercise 29.4 [पृष्ठ २९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 29 Limits
Exercise 29.4 | Q 32 | पृष्ठ २९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Evaluate `lim_(x -> 0) f(x)` where `f(x) = { (|x|/x, x != 0),(0, x = 0):}`


Find `lim_(x -> 0)` f(x), where `f(x) = {(x/|x|, x != 0),(0, x = 0):}`


\[\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 - x}}{2x}\]


\[\lim_{x \to 3} \frac{x - 3}{\sqrt{x - 2} - \sqrt{4 - x}}\] 


\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x - 1}\] 


\[\lim_{x \to 1} \frac{x - 1}{\sqrt{x^2 + 3 - 2}}\] 


\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x^2 - 1}\] 


\[\lim_{x \to 2} \frac{\sqrt{x^2 + 1} - \sqrt{5}}{x - 2}\] 


\[\lim_{x \to 2} \frac{x - 2}{\sqrt{x} - \sqrt{2}}\] 


\[\lim_{x \to 0} \frac{\sqrt{a + x} - \sqrt{a}}{x\sqrt{a^2 + ax}}\]


\[\lim_{x \to 5} \frac{x - 5}{\sqrt{6x - 5} - \sqrt{4x + 5}}\] 


\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x^3 - 1}\] 


\[\lim_{x \to 0} \frac{\sqrt{2 - x} - \sqrt{2 + x}}{x}\] 


\[\lim_{h \to 0} \frac{\sqrt{x + h} - \sqrt{x}}{h}, x \neq 0\] 


\[\lim_{x \to \sqrt{6}} \frac{\sqrt{5 + 2x} - \left( \sqrt{3} + \sqrt{2} \right)}{x^2 - 6}\] 

 


\[\lim_{x \to 0} \frac{5^x - 1}{\sqrt{4 + x} - 2}\]


\[\lim_{x \to 0} \frac{8^x - 4^x - 2^x + 1}{x^2}\]


\[\lim_{x \to 0} \frac{a^x + b^x + c^x - 3}{x}\] 


\[\lim_{x \to 0} \frac{5^x + 3^x + 2^x - 3}{x}\]


\[\lim_{x \to \infty} \left( a^{1/x} - 1 \right)x\]


\[\lim_{x \to 0} \frac{a^{mx} - b^{nx}}{\sin kx}\]


\[\lim_{x \to a} \frac{\log x - \log a}{x - a}\] 


\[\lim_{x \to 0} \frac{\log \left( 2 + x \right) + \log 0 . 5}{x}\]


\[\lim_{x \to 0} \frac{\log \left| 1 + x^3 \right|}{\sin^3 x}\] 

 


\[\lim_{x \to 0} \frac{e^x - 1}{\sqrt{1 - \cos x}}\]


\[\lim_{x \to 0} \frac{e^{3 + x} - \sin x - e^3}{x}\] 


\[\lim_{x \to 0} \frac{e^{3x} - e^{2x}}{x}\] 


`\lim_{x \to 0} \frac{e^\tan x - 1}{x}`


\[\lim_{x \to \infty} \left\{ \frac{x^2 + 2x + 3}{2 x^2 + x + 5} \right\}^\frac{3x - 2}{3x + 2}\]


\[\lim_{x \to 0} \left\{ \frac{e^x + e^{- x} - 2}{x^2} \right\}^{1/ x^2}\]


\[\lim_{x \to a} \left\{ \frac{\sin x}{\sin a} \right\}^\frac{1}{x - a}\]


Write the value of \[\lim_{x \to - \infty} \left( 3x + \sqrt{9 x^2 - x} \right) .\]


Evaluate: `lim_(x -> 2) (x^2 - 4)/(sqrt(3x - 2) - sqrt(x + 2))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×