हिंदी

Lim X → √ 6 √ 5 + 2 X − ( √ 3 + √ 2 ) X 2 − 6 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\lim_{x \to \sqrt{6}} \frac{\sqrt{5 + 2x} - \left( \sqrt{3} + \sqrt{2} \right)}{x^2 - 6}\] 

 

उत्तर

\[\lim_{x \to \sqrt{6}} \left[ \frac{\sqrt{5 + 2x} - \left( \sqrt{3} + \sqrt{2} \right)}{x^2 - 6} \right]\] 

=  \[\lim_{x \to \sqrt{6}} \left[ \frac{\sqrt{5 + 2x} - \sqrt{\left( \sqrt{3} + \sqrt{2} \right)^2}}{x^2 - \left( \sqrt{6} \right)^2} \right]\]

=  \[\lim_{x \to \sqrt{6}} \left[ \frac{\sqrt{5 + 2x} - \sqrt{3 + 2 + 2\sqrt{6}}}{\left( x - \sqrt{6} \right)\left( x + \sqrt{6} \right)} \right]\] 

=  \[\lim_{x \to \sqrt{6}} \left[ \frac{\sqrt{5 + 2x} - \sqrt{5 + 2\sqrt{6}}}{\left( x - \sqrt{6} \right)\left( x + \sqrt{6} \right)} \right]\] 

Rationalising the numerator: 

\[\lim_{x \to \sqrt{6}} \left[ \frac{\left( \sqrt{5 + 2x} - \sqrt{5 + 2\sqrt{6}} \right)\left( \sqrt{5 + 2x} + \sqrt{5 + 2\sqrt{6}} \right)}{\left( x - \sqrt{6} \right)\left( x + \sqrt{6} \right)\left( \sqrt{5 + 2x} + \sqrt{5 + 2\sqrt{6}} \right)} \right]\] 

= \[\lim_{x \to \sqrt{6}} \left[ \frac{\left( 5 + 2x \right) - \left( 5 + 2\sqrt{6} \right)}{\left( x - \sqrt{6} \right)\left( x + \sqrt{6} \right)\left( \sqrt{5 + 2x} + \sqrt{5 + 2\sqrt{6}} \right)} \right]\] 

=  \[\lim_{x \to \sqrt{6}} \left[ \frac{2\left( x - \sqrt{6} \right)}{\left( x - \sqrt{6} \right)\left( x + \sqrt{6} \right)\left( \sqrt{5 + 2x} + \sqrt{5 + 2\sqrt{6}} \right)} \right]\] 

=  \[\frac{2}{\left( \sqrt{6} + \sqrt{6} \right)\left( \sqrt{5 + 2\sqrt{6}} + \sqrt{5 + 2\sqrt{6}} \right)}\]
= \[\frac{1}{2\sqrt{6}\left( \sqrt{\left( \sqrt{3} + \sqrt{2} \right)^2} \right)}\] 
= \[\frac{1}{2\sqrt{6}\left( \sqrt{3} + \sqrt{2} \right)}\] 

= \[\frac{1}{2\sqrt{6}\left( \sqrt{3} + \sqrt{2} \right)} \times \frac{\left( \sqrt{3} - \sqrt{2} \right)}{\left( \sqrt{3} - \sqrt{2} \right)}\] 

=  \[\frac{\sqrt{3} - \sqrt{2}}{2\sqrt{6}\left( 3 - 2 \right)}\] 
= \[\frac{\sqrt{3} - \sqrt{2}}{2\sqrt{6}}\]

 

 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: Limits - Exercise 29.4 [पृष्ठ २९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 29 Limits
Exercise 29.4 | Q 33 | पृष्ठ २९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find `lim_(x -> 0)` f(x) and `lim_(x -> 1)` f(x) where f(x) = `{(2x + 3, x <= 0),(3(x+1), x > 0):}`


Evaluate `lim_(x -> 0) f(x)` where `f(x) = { (|x|/x, x != 0),(0, x = 0):}`


If f(x) = `{(|x| +  1,x < 0), (0, x = 0),(|x| -1, x > 0):}`

For what value (s) of a does `lim_(x -> a)`  f(x) exists?


If the function f(x) satisfies `lim_(x -> 1) (f(x) - 2)/(x^2 - 1) = pi`, evaluate `lim_(x -> 1) f(x)`.


if `f(x) = { (mx^2 + n, x < 0),(nx + m, 0<= x <= 1),(nx^3 + m, x > 1):}`

For what integers m and n does `lim_(x-> 0) f(x)` and `lim_(x -> 1) f(x)` exist?


\[\lim_{x \to 0} \frac{2x}{\sqrt{a + x} - \sqrt{a - x}}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 - x}}{2x}\]


\[\lim_{x \to 3} \frac{x - 3}{\sqrt{x - 2} - \sqrt{4 - x}}\] 


\[\lim_{x \to 0} \frac{\sqrt{a + x} - \sqrt{a}}{x\sqrt{a^2 + ax}}\]


\[\lim_{x \to 2} \frac{\sqrt{1 + 4x} - \sqrt{5 + 2x}}{x - 2}\] 


\[\lim_{x \to 1} \frac{\sqrt{3 + x} - \sqrt{5 - x}}{x^2 - 1}\] 


\[\lim_{x \to 4} \frac{2 - \sqrt{x}}{4 - x}\]


\[\lim_{x \to 0} \frac{\sqrt{1 + 3x} - \sqrt{1 - 3x}}{x}\]


\[\lim_{x \to 0} \frac{\sqrt{2 - x} - \sqrt{2 + x}}{x}\] 


\[\lim_{x \to 1} \frac{\sqrt{3 + x} - \sqrt{5 - x}}{x^2 - 1}\] 


\[\lim_{x \to 1} \frac{\left( 2x - 3 \right) \left( \sqrt{x} - 1 \right)}{3 x^2 + 3x - 6}\]


\[\lim_{x \to \sqrt{2}} \frac{\sqrt{3 + 2x} - \left( \sqrt{2} + 1 \right)}{x^2 - 2}\] 


\[\lim_{x \to 0} \frac{a^x + a^{- x} - 2}{x^2}\]


\[\lim_{x \to 0} \frac{a^{mx} - b^{nx}}{x}\] 


\[\lim_{x \to 2} \frac{x - 2}{\log_a \left( x - 1 \right)}\]


\[\lim_{x \to 0} \frac{\sin 2x}{e^x - 1}\] 


\[\lim_{x \to a} \frac{\log x - \log a}{x - a}\] 


\[\lim_{x \to 0} \frac{\log \left( a + x \right) - \log \left( a - x \right)}{x}\]


\[\lim_{x \to 5} \frac{e^x - e^5}{x - 5}\]


\[\lim_{x \to 0} \frac{e^{x + 2} - e^2}{x}\] 


\[\lim_{x \to 0} \frac{e^{3 + x} - \sin x - e^3}{x}\] 


\[\lim_{x \to 0} \frac{e^{bx} - e^{ax}}{x} \text{ where } 0 < a < b\] 


`\lim_{x \to 0} \frac{e^\tan x - 1}{x}`


\[\lim_{x \to 1} \left\{ \frac{x^3 + 2 x^2 + x + 1}{x^2 + 2x + 3} \right\}^\frac{1 - \cos \left( x - 1 \right)}{\left( x - 1 \right)^2}\]


Write the value of \[\lim_{n \to \infty} \frac{n! + \left( n + 1 \right)!}{\left( n + 1 \right)! + \left( n + 2 \right)!} .\]


Write the value of \[\lim_{n \to \infty} \frac{1 + 2 + 3 + . . . + n}{n^2} .\]


Evaluate: `lim_(x -> 2) (x^2 - 4)/(sqrt(3x - 2) - sqrt(x + 2))`


Let f(x) be a polynomial of degree 4 having extreme values at x = 1 and x = 2. If `lim_(x rightarrow 0) ((f(x))/x^2 + 1)` = 3 then f(–1) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×