Advertisements
Advertisements
प्रश्न
\[\lim_{x \to \sqrt{2}} \frac{\sqrt{3 + 2x} - \left( \sqrt{2} + 1 \right)}{x^2 - 2}\]
उत्तर
\[\lim_{x \to \sqrt{2}} \left[ \frac{\sqrt{3 + 2x} - \left( \sqrt{2} + 1 \right)}{x^2 - 2} \right]\]
= \[\lim_{x \to \sqrt{2}} \left[ \frac{\sqrt{3 + 2x} - \sqrt{\left( \sqrt{2} + 1 \right)^2}}{\left( x - \sqrt{2} \right)\left( x + \sqrt{2} \right)} \right]\]
= \[\lim_{x \to \sqrt{2}} \left[ \frac{\sqrt{3 + 2x} - \sqrt{2 + 1 + 2\sqrt{2}}}{\left( x - \sqrt{2} \right)\left( x + \sqrt{2} \right)} \right]\]
= \[\lim_{x \to \sqrt{2}} \left[ \frac{\left( \sqrt{3 + 2x} - \sqrt{3 + 2\sqrt{2}} \right)}{\left( x - \sqrt{2} \right)\left( x + \sqrt{2} \right)} \right]\]
Rationalising the numerator:
\[\lim_{x \to \sqrt{2}} \left[ \frac{\left( \sqrt{3 + 2x} - \sqrt{3 + 2\sqrt{2}} \right)\left( \sqrt{3 + 2x} + \sqrt{3 + 2\sqrt{2}} \right)}{\left( x - \sqrt{2} \right)\left( x + \sqrt{2} \right)\left( \sqrt{3 + 2x} + \sqrt{3 + 2\sqrt{2}} \right)} \right]\]
= \[\lim_{x \to \sqrt{2}} \left[ \frac{\left( 3 + 2x \right) - \left( 3 + 2\sqrt{2} \right)}{\left( x - \sqrt{2} \right)\left( x + \sqrt{2} \right)\left( \sqrt{3 + 2x} + \sqrt{3 + 2\sqrt{2}} \right)} \right]\]
= \[\lim_{x \to \sqrt{2}} \left[ \frac{2\left( x - \sqrt{2} \right)}{\left( x - \sqrt{2} \right)\left( x + \sqrt{2} \right)\left( \sqrt{3 + 2x} + \sqrt{3 + 2\sqrt{2}} \right)} \right]\]
=\[\frac{2}{\left( \sqrt{2} + \sqrt{2} \right)\left( \sqrt{3 + 2\sqrt{2}} + \sqrt{3 + 2\sqrt{2}} \right)}\]
= \[\frac{2}{\left( 2\sqrt{2} \right)\left( 2\sqrt{3 + 2\sqrt{2}} \right)}\]
= \[\frac{1}{2\sqrt{2}\left( \sqrt{3 + 2\sqrt{2}} \right)}\]
= \[\frac{1}{2\sqrt{2}\sqrt{\left( \sqrt{2} + 1 \right)^2}}\]
= \[\frac{1}{2\sqrt{2}\left( \sqrt{2} + 1 \right)} \times \frac{\sqrt{2} - 1}{\sqrt{2} - 1}\]
= \[\frac{\sqrt{2} - 1}{2\sqrt{2}\left( 2 - 1 \right)}\]
=\[\frac{\sqrt{2} - 1}{2\sqrt{2}}\]
APPEARS IN
संबंधित प्रश्न
If the function f(x) satisfies `lim_(x -> 1) (f(x) - 2)/(x^2 - 1) = pi`, evaluate `lim_(x -> 1) f(x)`.
\[\lim_{x \to 0} \frac{\sqrt{a^2 + x^2} - a}{x^2}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 - x}}{2x}\]
\[\lim_{x \to 0} \frac{x}{\sqrt{1 + x} - \sqrt{1 - x}}\]
\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x - 1}\]
\[\lim_{x \to 3} \frac{\sqrt{x + 3} - \sqrt{6}}{x^2 - 9}\]
\[\lim_{x \to 2} \frac{x - 2}{\sqrt{x} - \sqrt{2}}\]
\[\lim_{x \to 7} \frac{4 - \sqrt{9 + x}}{1 - \sqrt{8 - x}}\]
\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x^3 - 1}\]
\[\lim_{x \to 2} \frac{\sqrt{1 + 4x} - \sqrt{5 + 2x}}{x - 2}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{x}\]
\[\lim_{x \to 1} \frac{\sqrt{3 + x} - \sqrt{5 - x}}{x^2 - 1}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 + x}}{\sqrt{1 + x^3} - \sqrt{1 + x}}\]
\[\lim_{x \to \sqrt{10}} \frac{\sqrt{7 + 2x} - \left( \sqrt{5} + \sqrt{2} \right)}{x^2 - 10}\]
\[\lim_{x \to 0} \frac{5^x - 1}{\sqrt{4 + x} - 2}\]
\[\lim_{x \to 0} \frac{\log \left( 1 + x \right)}{3^x - 1}\]
\[\lim_{x \to 0} \frac{a^{mx} - b^{nx}}{x}\]
\[\lim_{x \to 2} \frac{x - 2}{\log_a \left( x - 1 \right)}\]
\[\lim_{x \to 0} \frac{5^x + 3^x + 2^x - 3}{x}\]
\[\lim_{x \to 0} \frac{e\sin x - 1}{x}\]
\[\lim_{x \to a} \frac{\log x - \log a}{x - a}\]
\[\lim_{x \to 0} \frac{\log \left( a + x \right) - \log \left( a - x \right)}{x}\]
\[\lim_{x \to 0} \frac{\log \left| 1 + x^3 \right|}{\sin^3 x}\]
\[\lim_{x \to 0} \frac{e^{x + 2} - e^2}{x}\]
`\lim_{x \to \pi/2} \frac{e^\cos x - 1}{\cos x}`
\[\lim_{x \to 0} \frac{e^{3 + x} - \sin x - e^3}{x}\]
`\lim_{x \to 0} \frac{e^\tan x - 1}{\tan x}`
\[\lim_{x \to 0} \frac{e^{bx} - e^{ax}}{x} \text{ where } 0 < a < b\]
`\lim_{x \to 0} \frac{e^x - e^\sin x}{x - \sin x}`
\[\lim_{x \to 0} \left\{ \frac{e^x + e^{- x} - 2}{x^2} \right\}^{1/ x^2}\]
\[\lim_{x \to 0} \frac{\sin x}{\sqrt{1 + x} - 1} .\]
Write the value of \[\lim_{n \to \infty} \frac{1 + 2 + 3 + . . . + n}{n^2} .\]
Evaluate: `lim_(h -> 0) (sqrt(x + h) - sqrt(x))/h`