Advertisements
Advertisements
प्रश्न
\[\lim_{x \to \sqrt{2}} \frac{\sqrt{3 + 2x} - \left( \sqrt{2} + 1 \right)}{x^2 - 2}\]
उत्तर
\[\lim_{x \to \sqrt{2}} \left[ \frac{\sqrt{3 + 2x} - \left( \sqrt{2} + 1 \right)}{x^2 - 2} \right]\]
= \[\lim_{x \to \sqrt{2}} \left[ \frac{\sqrt{3 + 2x} - \sqrt{\left( \sqrt{2} + 1 \right)^2}}{\left( x - \sqrt{2} \right)\left( x + \sqrt{2} \right)} \right]\]
= \[\lim_{x \to \sqrt{2}} \left[ \frac{\sqrt{3 + 2x} - \sqrt{2 + 1 + 2\sqrt{2}}}{\left( x - \sqrt{2} \right)\left( x + \sqrt{2} \right)} \right]\]
= \[\lim_{x \to \sqrt{2}} \left[ \frac{\left( \sqrt{3 + 2x} - \sqrt{3 + 2\sqrt{2}} \right)}{\left( x - \sqrt{2} \right)\left( x + \sqrt{2} \right)} \right]\]
Rationalising the numerator:
\[\lim_{x \to \sqrt{2}} \left[ \frac{\left( \sqrt{3 + 2x} - \sqrt{3 + 2\sqrt{2}} \right)\left( \sqrt{3 + 2x} + \sqrt{3 + 2\sqrt{2}} \right)}{\left( x - \sqrt{2} \right)\left( x + \sqrt{2} \right)\left( \sqrt{3 + 2x} + \sqrt{3 + 2\sqrt{2}} \right)} \right]\]
= \[\lim_{x \to \sqrt{2}} \left[ \frac{\left( 3 + 2x \right) - \left( 3 + 2\sqrt{2} \right)}{\left( x - \sqrt{2} \right)\left( x + \sqrt{2} \right)\left( \sqrt{3 + 2x} + \sqrt{3 + 2\sqrt{2}} \right)} \right]\]
= \[\lim_{x \to \sqrt{2}} \left[ \frac{2\left( x - \sqrt{2} \right)}{\left( x - \sqrt{2} \right)\left( x + \sqrt{2} \right)\left( \sqrt{3 + 2x} + \sqrt{3 + 2\sqrt{2}} \right)} \right]\]
=\[\frac{2}{\left( \sqrt{2} + \sqrt{2} \right)\left( \sqrt{3 + 2\sqrt{2}} + \sqrt{3 + 2\sqrt{2}} \right)}\]
= \[\frac{2}{\left( 2\sqrt{2} \right)\left( 2\sqrt{3 + 2\sqrt{2}} \right)}\]
= \[\frac{1}{2\sqrt{2}\left( \sqrt{3 + 2\sqrt{2}} \right)}\]
= \[\frac{1}{2\sqrt{2}\sqrt{\left( \sqrt{2} + 1 \right)^2}}\]
= \[\frac{1}{2\sqrt{2}\left( \sqrt{2} + 1 \right)} \times \frac{\sqrt{2} - 1}{\sqrt{2} - 1}\]
= \[\frac{\sqrt{2} - 1}{2\sqrt{2}\left( 2 - 1 \right)}\]
=\[\frac{\sqrt{2} - 1}{2\sqrt{2}}\]
APPEARS IN
संबंधित प्रश्न
Find `lim_(x -> 1)` f(x), where `f(x) = {(x^2 -1, x <= 1), (-x^2 -1, x > 1):}`
Let a1, a2,..., an be fixed real numbers and define a function f ( x) = ( x − a1 ) ( x − a2 )...( x − an ).
What is `lim_(x -> a_1) f(x)` ? For some a ≠ a1, a2, ..., an, compute `lim_(x -> a) f(x)`
\[\lim_{x \to 0} \frac{\sqrt{a^2 + x^2} - a}{x^2}\]
\[\lim_{x \to 3} \frac{x - 3}{\sqrt{x - 2} - \sqrt{4 - x}}\]
\[\lim_{x \to 0} \frac{x}{\sqrt{1 + x} - \sqrt{1 - x}}\]
\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x - 1}\]
\[\lim_{x \to 0} \frac{\sqrt{a + x} - \sqrt{a}}{x\sqrt{a^2 + ax}}\]
\[\lim_{x \to 5} \frac{x - 5}{\sqrt{6x - 5} - \sqrt{4x + 5}}\]
\[\lim_{x \to 2} \frac{\sqrt{1 + 4x} - \sqrt{5 + 2x}}{x - 2}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{x}\]
\[\lim_{x \to a} \frac{x - a}{\sqrt{x} - \sqrt{a}}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + 3x} - \sqrt{1 - 3x}}{x}\]
\[\lim_{x \to 1} \frac{\left( 2x - 3 \right) \left( \sqrt{x} - 1 \right)}{3 x^2 + 3x - 6}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 + x}}{\sqrt{1 + x^3} - \sqrt{1 + x}}\]
\[\lim_{x \to 1} \frac{ x^2 - \sqrt{x}}{\sqrt{x} - 1}\]
\[\lim_{h \to 0} \frac{\sqrt{x + h} - \sqrt{x}}{h}, x \neq 0\]
\[\lim_{x \to 0} \frac{\log \left( 1 + x \right)}{3^x - 1}\]
\[\lim_{x \to 0} \frac{5^x + 3^x + 2^x - 3}{x}\]
\[\lim_{x \to 0} \frac{a^{mx} - b^{nx}}{\sin kx}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{\log \left( 1 + x \right)}\]
`\lim_{x \to \pi/2} \frac{a^\cot x - a^\cos x}{\cot x - \cos x}`
\[\lim_{x \to 5} \frac{e^x - e^5}{x - 5}\]
`\lim_{x \to \pi/2} \frac{e^\cos x - 1}{\cos x}`
\[\lim_{x \to 0} \frac{e^{3x} - e^{2x}}{x}\]
\[\lim_{x \to 0} \frac{a^x - a^{- x}}{x}\]
\[\lim_{x \to 0} \frac{x\left( e^x - 1 \right)}{1 - \cos x}\]
\[\lim_{x \to \pi/2} \frac{2^{- \cos x} - 1}{x\left( x - \frac{\pi}{2} \right)}\]
\[\lim_{x \to \infty} \left\{ \frac{x^2 + 2x + 3}{2 x^2 + x + 5} \right\}^\frac{3x - 2}{3x + 2}\]
\[\lim_{x \to a} \left\{ \frac{\sin x}{\sin a} \right\}^\frac{1}{x - a}\]
\[\lim_{x \to a} \left\{ \frac{\sin x}{\sin a} \right\}^\frac{1}{x - a}\]
\[\lim_{x \to 0} \frac{\sin x}{\sqrt{1 + x} - 1} .\]
Write the value of \[\lim_{n \to \infty} \frac{1 + 2 + 3 + . . . + n}{n^2} .\]
Evaluate: `lim_(h -> 0) (sqrt(x + h) - sqrt(x))/h`