मराठी

Lim X → ∞ { X 2 + 2 X + 3 2 X 2 + X + 5 } 3 X − 2 3 X + 2 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\lim_{x \to \infty} \left\{ \frac{x^2 + 2x + 3}{2 x^2 + x + 5} \right\}^\frac{3x - 2}{3x + 2}\]

उत्तर

\[\lim_{x \to \infty} \left( \frac{x^2 + 2x + 3}{2 x^2 + x + 5} \right)^\left( \frac{3x - 2}{3x + 2} \right) \]
\[ = \lim_{x \to \infty} \left[ 1 + \frac{x^2 + 2x + 3}{2 x^2 + x + 5} - 1 \right]\left( {}^\frac{3x - 2}{3x + 2} \right)\]
\[ = \lim_{x \to \infty} \left[ 1 + \frac{\left( x^2 + 2x + 3 \right) - \left( 2 x^2 + x + 5 \right)}{2 x^2 + x + 5} \right]^\left( \frac{3x - 2}{3x + 2} \right) \]
\[ = \lim_{x \to \infty} \left[ 1 + \frac{\left( - x^2 + x - 2 \right)}{2 x^2 + x + 5} \right]^\left( \frac{3x - 2}{3x + 2} \right) \]
\[ = e^\lim_{x \to \infty} \left( \frac{- x^2 + x - 2}{2 x^2 + x + 5} \right) \times \left( \frac{3x - 2}{3x + 2} \right) \]
\[ = e^\lim_{x \to \infty} \left( \frac{- 1 + \frac{1}{x} - \frac{2}{x^2}}{2 + \frac{1}{x} + \frac{5}{x^2}} \right) \times \left( \frac{3 - \frac{2}{x}}{3 + \frac{2}{x}} \right) \]
\[ = e^{- \frac{1}{2} \times 1} \]
\[ = \frac{1}{\sqrt{e}}\]
\[\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 29: Limits - Exercise 29.11 [पृष्ठ ७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 29 Limits
Exercise 29.11 | Q 6 | पृष्ठ ७७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find `lim_(x -> 0)` f(x) and `lim_(x -> 1)` f(x) where f(x) = `{(2x + 3, x <= 0),(3(x+1), x > 0):}`


\[\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 - x}}{2x}\]


\[\lim_{x \to 3} \frac{x - 3}{\sqrt{x - 2} - \sqrt{4 - x}}\] 


\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x - 1}\] 


\[\lim_{x \to 1} \frac{x - 1}{\sqrt{x^2 + 3 - 2}}\] 


\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x^2 - 1}\] 


\[\lim_{x \to 7} \frac{4 - \sqrt{9 + x}}{1 - \sqrt{8 - x}}\] 


\[\lim_{x \to 2} \frac{\sqrt{1 + 4x} - \sqrt{5 + 2x}}{x - 2}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{x}\] 


\[\lim_{x \to a} \frac{x - a}{\sqrt{x} - \sqrt{a}}\]


\[\lim_{x \to 0} \frac{\sqrt{1 + 3x} - \sqrt{1 - 3x}}{x}\]


\[\lim_{x \to 1} \frac{ x^2 - \sqrt{x}}{\sqrt{x} - 1}\]


\[\lim_{x \to \sqrt{10}} \frac{\sqrt{7 + 2x} - \left( \sqrt{5} + \sqrt{2} \right)}{x^2 - 10}\] 


\[\lim_{x \to 0} \frac{a^{mx} - 1}{b^{nx} - 1}, n \neq 0\]


\[\lim_{x \to 0} \frac{a^x + b^x - 2}{x}\]


\[\lim_{x \to \infty} \left( a^{1/x} - 1 \right)x\]


\[\lim_{x \to 0} \frac{a^{mx} - b^{nx}}{\sin kx}\]


\[\lim_{x \to 0} \frac{\sin 2x}{e^x - 1}\] 


\[\lim_{x \to 0} \frac{e\sin x - 1}{x}\] 


\[\lim_{x \to 0} \frac{e^{2x} - e^x}{\sin 2x}\]


\[\lim_{x \to 0} \frac{\log \left| 1 + x^3 \right|}{\sin^3 x}\] 

 


`\lim_{x \to \pi/2} \frac{a^\cot x - a^\cos x}{\cot x - \cos x}`


\[\lim_{x \to 5} \frac{e^x - e^5}{x - 5}\]


\[\lim_{x \to 0} \frac{e^{x + 2} - e^2}{x}\] 


`\lim_{x \to \pi/2} \frac{e^\cos x - 1}{\cos x}`


\[\lim_{x \to 0} \frac{e^x - x - 1}{2}\] 


`\lim_{x \to 0} \frac{e^\tan x - 1}{\tan x}`


\[\lim_{x \to 0} \frac{e^{bx} - e^{ax}}{x} \text{ where } 0 < a < b\] 


\[\lim_{x \to 0} \frac{3^{2 + x} - 9}{x}\]


\[\lim_{x \to 0} \frac{a^x - a^{- x}}{x}\]


\[\lim_{x \to a} \left\{ \frac{\sin x}{\sin a} \right\}^\frac{1}{x - a}\]


\[\lim_{x \to \infty} \left\{ \frac{3 x^2 + 1}{4 x^2 - 1} \right\}^\frac{x^3}{1 + x}\]


\[\lim_{x \to 0} \frac{\sin x}{\sqrt{1 + x} - 1} .\] 


Write the value of \[\lim_{x \to \pi/2} \frac{2x - \pi}{\cos x} .\] 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×