English

Lim X → ∞ { X 2 + 2 X + 3 2 X 2 + X + 5 } 3 X − 2 3 X + 2 - Mathematics

Advertisements
Advertisements

Question

\[\lim_{x \to \infty} \left\{ \frac{x^2 + 2x + 3}{2 x^2 + x + 5} \right\}^\frac{3x - 2}{3x + 2}\]

Solution

\[\lim_{x \to \infty} \left( \frac{x^2 + 2x + 3}{2 x^2 + x + 5} \right)^\left( \frac{3x - 2}{3x + 2} \right) \]
\[ = \lim_{x \to \infty} \left[ 1 + \frac{x^2 + 2x + 3}{2 x^2 + x + 5} - 1 \right]\left( {}^\frac{3x - 2}{3x + 2} \right)\]
\[ = \lim_{x \to \infty} \left[ 1 + \frac{\left( x^2 + 2x + 3 \right) - \left( 2 x^2 + x + 5 \right)}{2 x^2 + x + 5} \right]^\left( \frac{3x - 2}{3x + 2} \right) \]
\[ = \lim_{x \to \infty} \left[ 1 + \frac{\left( - x^2 + x - 2 \right)}{2 x^2 + x + 5} \right]^\left( \frac{3x - 2}{3x + 2} \right) \]
\[ = e^\lim_{x \to \infty} \left( \frac{- x^2 + x - 2}{2 x^2 + x + 5} \right) \times \left( \frac{3x - 2}{3x + 2} \right) \]
\[ = e^\lim_{x \to \infty} \left( \frac{- 1 + \frac{1}{x} - \frac{2}{x^2}}{2 + \frac{1}{x} + \frac{5}{x^2}} \right) \times \left( \frac{3 - \frac{2}{x}}{3 + \frac{2}{x}} \right) \]
\[ = e^{- \frac{1}{2} \times 1} \]
\[ = \frac{1}{\sqrt{e}}\]
\[\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.11 [Page 77]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.11 | Q 6 | Page 77

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find `lim_(x -> 0)` f(x) and `lim_(x -> 1)` f(x) where f(x) = `{(2x + 3, x <= 0),(3(x+1), x > 0):}`


Find `lim_(x -> 1)` f(x), where `f(x) = {(x^2 -1, x <= 1), (-x^2 -1, x > 1):}`


Let a1, a2,..., an be fixed real numbers and define a function f ( x) = ( x − a1 ) ( x − a2 )...( x − an ).

What is `lim_(x -> a_1) f(x)` ? For some a ≠ a1, a2, ..., an, compute `lim_(x -> a) f(x)`


If the function f(x) satisfies `lim_(x -> 1) (f(x) - 2)/(x^2 - 1) = pi`, evaluate `lim_(x -> 1) f(x)`.


\[\lim_{x \to 0} \frac{\sqrt{a^2 + x^2} - a}{x^2}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 - x}}{2x}\]


\[\lim_{x \to 3} \frac{x - 3}{\sqrt{x - 2} - \sqrt{4 - x}}\] 


\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x^2 - 1}\] 


\[\lim_{x \to 7} \frac{4 - \sqrt{9 + x}}{1 - \sqrt{8 - x}}\] 


\[\lim_{x \to 2} \frac{\sqrt{1 + 4x} - \sqrt{5 + 2x}}{x - 2}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{x}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + 3x} - \sqrt{1 - 3x}}{x}\]


\[\lim_{x \to 0} \frac{\sqrt{2 - x} - \sqrt{2 + x}}{x}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 + x}}{\sqrt{1 + x^3} - \sqrt{1 + x}}\] 


\[\lim_{h \to 0} \frac{\sqrt{x + h} - \sqrt{x}}{h}, x \neq 0\] 


\[\lim_{x \to 0} \frac{\log \left( 1 + x \right)}{3^x - 1}\]


\[\lim_{x \to 0} \frac{a^x + b^x - 2}{x}\]


\[\lim_{x \to 0} \frac{a^{mx} - b^{nx}}{x}\] 


\[\lim_{x \to 0} \frac{5^x + 3^x + 2^x - 3}{x}\]


\[\lim_{x \to \infty} \left( a^{1/x} - 1 \right)x\]


\[\lim_{x \to 0} \frac{a^x + b^ x - c^x - d^x}{x}\]


\[\lim_{x \to 0} \frac{\sin 2x}{e^x - 1}\] 


\[\lim_{x \to 0} \frac{x\left( 2^x - 1 \right)}{1 - \cos x}\] 


`\lim_{x \to \pi/2} \frac{a^\cot x - a^\cos x}{\cot x - \cos x}`


\[\lim_{x \to 0} \frac{e^x - 1}{\sqrt{1 - \cos x}}\]


\[\lim_{x \to 0} \frac{e^{3x} - e^{2x}}{x}\] 


\[\lim_{x \to 0} \frac{e^{bx} - e^{ax}}{x} \text{ where } 0 < a < b\] 


\[\lim_{x \to 1} \left\{ \frac{x^3 + 2 x^2 + x + 1}{x^2 + 2x + 3} \right\}^\frac{1 - \cos \left( x - 1 \right)}{\left( x - 1 \right)^2}\]


\[\lim_{x \to a} \left\{ \frac{\sin x}{\sin a} \right\}^\frac{1}{x - a}\]


\[\lim_{x \to 0} \left\{ \frac{e^x + e^{- x} - 2}{x^2} \right\}^{1/ x^2}\]


\[\lim_{x \to a} \left\{ \frac{\sin x}{\sin a} \right\}^\frac{1}{x - a}\]


Write the value of \[\lim_{n \to \infty} \frac{n! + \left( n + 1 \right)!}{\left( n + 1 \right)! + \left( n + 2 \right)!} .\]


Write the value of \[\lim_{n \to \infty} \frac{1 + 2 + 3 + . . . + n}{n^2} .\]


Evaluate: `lim_(h -> 0) (sqrt(x + h) - sqrt(x))/h`


Let f(x) be a polynomial of degree 4 having extreme values at x = 1 and x = 2. If `lim_(x rightarrow 0) ((f(x))/x^2 + 1)` = 3 then f(–1) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×