Advertisements
Advertisements
Question
\[\lim_{x \to 2} \frac{\sqrt{1 + 4x} - \sqrt{5 + 2x}}{x - 2}\]
Solution
\[\lim_{x \to 2} \left[ \frac{\sqrt{1 + 4x} - \sqrt{5 + 2x}}{x - 2} \right]\]It is of the from \[\frac{0}{0}\]
Rationalising the numerator:
\[\lim_{x \to 2} \left[ \frac{\left( \sqrt{1 + 4x} - \sqrt{5 + 2x} \right) \left( \sqrt{1 + 4x} + \sqrt{5 + 2x} \right)}{\left( x - 2 \right) \left( \sqrt{1 + 4x} + \sqrt{5 + 2x} \right)} \right]\]
=\[\lim_{x \to 2} \left[ \frac{\left( 1 + 4x \right) - \left( 5 + 2x \right)}{\left( x - 2 \right)\left( \sqrt{1 + 4x} + \sqrt{5 + 2x} \right)} \right]\]
= \[\lim_{x \to 2} \left[ \frac{2\left( x - 2 \right)}{\left( x - 2 \right)\left( \sqrt{1 + 4x} + \sqrt{5 + 2x} \right)} \right]\]
= \[\frac{2}{\left( \sqrt{1 + 4 \times 2} + \sqrt{5 + 2 \times 2} \right)}\]
= \[\frac{2}{3 + 3}\]
= \[\frac{1}{3}\]
APPEARS IN
RELATED QUESTIONS
If f(x) = `{(|x| + 1,x < 0), (0, x = 0),(|x| -1, x > 0):}`
For what value (s) of a does `lim_(x -> a)` f(x) exists?
If the function f(x) satisfies `lim_(x -> 1) (f(x) - 2)/(x^2 - 1) = pi`, evaluate `lim_(x -> 1) f(x)`.
\[\lim_{x \to 0} \frac{\sqrt{1 + x + x^2} - 1}{x}\]
\[\lim_{x \to 0} \frac{2x}{\sqrt{a + x} - \sqrt{a - x}}\]
\[\lim_{x \to 0} \frac{\sqrt{a^2 + x^2} - a}{x^2}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 - x}}{2x}\]
\[\lim_{x \to 0} \frac{x}{\sqrt{1 + x} - \sqrt{1 - x}}\]
\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x^3 - 1}\]
\[\lim_{x \to 1} \frac{\sqrt{3 + x} - \sqrt{5 - x}}{x^2 - 1}\]
\[\lim_{x \to 4} \frac{2 - \sqrt{x}}{4 - x}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + 3x} - \sqrt{1 - 3x}}{x}\]
\[\lim_{x \to 1} \frac{\left( 2x - 3 \right) \left( \sqrt{x} - 1 \right)}{3 x^2 + 3x - 6}\]
\[\lim_{h \to 0} \frac{\sqrt{x + h} - \sqrt{x}}{h}, x \neq 0\]
\[\lim_{x \to \sqrt{2}} \frac{\sqrt{3 + 2x} - \left( \sqrt{2} + 1 \right)}{x^2 - 2}\]
\[\lim_{x \to 0} \frac{\log \left( 1 + x \right)}{3^x - 1}\]
\[\lim_{x \to 0} \frac{a^x + b^x - 2}{x}\]
\[\lim_{x \to 0} \frac{9^x - 2 . 6^x + 4^x}{x^2}\]
\[\lim_{x \to 0} \frac{8^x - 4^x - 2^x + 1}{x^2}\]
\[\lim_{x \to 0} \frac{a^{mx} - b^{nx}}{x}\]
\[\lim_{x \to \infty} \left( a^{1/x} - 1 \right)x\]
\[\lim_{x \to 0} \frac{e^x - 1 + \sin x}{x}\]
\[\lim_{x \to 0} \frac{e^{2x} - e^x}{\sin 2x}\]
\[\lim_{x \to a} \frac{\log x - \log a}{x - a}\]
`\lim_{x \to \pi/2} \frac{a^\cot x - a^\cos x}{\cot x - \cos x}`
\[\lim_{x \to 0} \frac{e^{3 + x} - \sin x - e^3}{x}\]
\[\lim_{x \to 0} \frac{e^x - x - 1}{2}\]
`\lim_{x \to 0} \frac{e^x - e^\sin x}{x - \sin x}`
\[\lim_{x \to 1} \left\{ \frac{x^3 + 2 x^2 + x + 1}{x^2 + 2x + 3} \right\}^\frac{1 - \cos \left( x - 1 \right)}{\left( x - 1 \right)^2}\]
\[\lim_{x \to 0} \left\{ \frac{e^x + e^{- x} - 2}{x^2} \right\}^{1/ x^2}\]
Write the value of \[\lim_{x \to - \infty} \left( 3x + \sqrt{9 x^2 - x} \right) .\]
Evaluate: `lim_(h -> 0) (sqrt(x + h) - sqrt(x))/h`