Advertisements
Advertisements
Question
Write the value of \[\lim_{x \to - \infty} \left( 3x + \sqrt{9 x^2 - x} \right) .\]
Solution
\[\lim_{x \to - \infty} \left( 3x + \sqrt{9 x^2 - x} \right)\]
\[\text{ Let } \]
\[m = - x\]
\[\text{ If } x \to - \infty , \text{ then m } \to \infty . \]
\[ = \lim_{m \to \infty} \left( - 3m + \sqrt{9 m^2 + m} \right)\]
\[\text{ Rationalising the numerator, we get }: \]
\[ = \lim_{m \to \infty} \frac{\left( - 3m + \sqrt{9 m^2 + m} \right) \left( - 3m - \sqrt{9 m^2 + m} \right)}{- 3m - \sqrt{9 m^2 + m}}\]
\[ = \lim_{m \to \infty} \left( \frac{- \left[ - 9 m^2 + \left( 9 m^2 + m \right) \right]}{- 3m - \sqrt{9 m^2 + m}} \right)\]
\[ = \lim_{m \to \infty} \left( \frac{- m}{- 3m - \sqrt{9 m^2 + m}} \right)\]
\[\text{ Dividing the numerator and the denominator bym, and applying limit, we get }:\]
\[ = \frac{- 1}{- 3 - \sqrt{9 + \frac{1}{\infty}}}\]
\[ = \frac{1}{6}\]
APPEARS IN
RELATED QUESTIONS
If the function f(x) satisfies `lim_(x -> 1) (f(x) - 2)/(x^2 - 1) = pi`, evaluate `lim_(x -> 1) f(x)`.
\[\lim_{x \to 0} \frac{2x}{\sqrt{a + x} - \sqrt{a - x}}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 - x}}{2x}\]
\[\lim_{x \to 1} \frac{x - 1}{\sqrt{x^2 + 3 - 2}}\]
\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x^2 - 1}\]
\[\lim_{x \to 7} \frac{4 - \sqrt{9 + x}}{1 - \sqrt{8 - x}}\]
\[\lim_{x \to 0} \frac{\sqrt{a + x} - \sqrt{a}}{x\sqrt{a^2 + ax}}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{x}\]
\[\lim_{x \to 1} \frac{\left( 2x - 3 \right) \left( \sqrt{x} - 1 \right)}{3 x^2 + 3x - 6}\]
\[\lim_{x \to 1} \frac{ x^2 - \sqrt{x}}{\sqrt{x} - 1}\]
\[\lim_{h \to 0} \frac{\sqrt{x + h} - \sqrt{x}}{h}, x \neq 0\]
\[\lim_{x \to \sqrt{6}} \frac{\sqrt{5 + 2x} - \left( \sqrt{3} + \sqrt{2} \right)}{x^2 - 6}\]
\[\lim_{x \to 0} \frac{a^x + b^x - 2}{x}\]
\[\lim_{x \to 2} \frac{x - 2}{\log_a \left( x - 1 \right)}\]
\[\lim_{x \to \infty} \left( a^{1/x} - 1 \right)x\]
\[\lim_{x \to 0} \frac{a^x + b^ x - c^x - d^x}{x}\]
\[\lim_{x \to a} \frac{\log x - \log a}{x - a}\]
\[\lim_{x \to 0} \frac{\log \left| 1 + x^3 \right|}{\sin^3 x}\]
`\lim_{x \to 0} \frac{e^\tan x - 1}{x}`
`\lim_{x \to 0} \frac{e^x - e^\sin x}{x - \sin x}`
\[\lim_{x \to \pi/2} \frac{2^{- \cos x} - 1}{x\left( x - \frac{\pi}{2} \right)}\]
\[\lim_{x \to a} \left\{ \frac{\sin x}{\sin a} \right\}^\frac{1}{x - a}\]
\[\lim_{x \to 0} \left\{ \frac{e^x + e^{- x} - 2}{x^2} \right\}^{1/ x^2}\]
\[\lim_{x \to a} \left\{ \frac{\sin x}{\sin a} \right\}^\frac{1}{x - a}\]
\[\lim_{x \to 0} \frac{\sin x}{\sqrt{1 + x} - 1} .\]
Write the value of \[\lim_{x \to \pi/2} \frac{2x - \pi}{\cos x} .\]