Advertisements
Advertisements
Question
\[\lim_{x \to 1} \frac{x - 1}{\sqrt{x^2 + 3 - 2}}\]
Solution
\[\lim_{x \to 1} \left[ \frac{x - 1}{\sqrt{x^2 + 3} - 2} \right]\] It is of the form \[\frac{0}{0}\]
Rationalising the denominator:
\[\lim_{x \to 1} \left[ \frac{\left( x - 1 \right)\left( \sqrt{x^2 + 3} + 2 \right)}{\left( \sqrt{x^2 + 3} - 2 \right)\left( \sqrt{x^2 + 3} + 2 \right)} \right]\]
= \[\lim_{x \to 1} \left[ \frac{\left( x - 1 \right)\left( \sqrt{x^2 + 3} + 2 \right)}{x^2 + 3 - 4} \right]\]
= \[\lim_{x \to 1} \left[ \frac{\left( x - 1 \right)\left( \sqrt{x^2 + 3} + 2 \right)}{\left( x^2 - 1 \right)} \right]\] = \[\lim_{x \to 1} \left[ \frac{\left( x - 1 \right)\left( \sqrt{x^2 + 3} + 2 \right)}{\left( x - 1 \right)\left( x + 1 \right)} \right]\]
= \[\frac{\sqrt{1 + 3} + 2}{1 + 1}\]
= \[\frac{4}{2}\]
= 2
APPEARS IN
RELATED QUESTIONS
Find `lim_(x -> 0)` f(x) and `lim_(x -> 1)` f(x) where f(x) = `{(2x + 3, x <= 0),(3(x+1), x > 0):}`
Find `lim_(x -> 1)` f(x), where `f(x) = {(x^2 -1, x <= 1), (-x^2 -1, x > 1):}`
Find `lim_(x -> 0)` f(x), where `f(x) = {(x/|x|, x != 0),(0, x = 0):}`
Let a1, a2,..., an be fixed real numbers and define a function f ( x) = ( x − a1 ) ( x − a2 )...( x − an ).
What is `lim_(x -> a_1) f(x)` ? For some a ≠ a1, a2, ..., an, compute `lim_(x -> a) f(x)`
if `f(x) = { (mx^2 + n, x < 0),(nx + m, 0<= x <= 1),(nx^3 + m, x > 1):}`
For what integers m and n does `lim_(x-> 0) f(x)` and `lim_(x -> 1) f(x)` exist?
\[\lim_{x \to 0} \frac{2x}{\sqrt{a + x} - \sqrt{a - x}}\]
\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x - 1}\]
\[\lim_{x \to 2} \frac{x - 2}{\sqrt{x} - \sqrt{2}}\]
\[\lim_{x \to 7} \frac{4 - \sqrt{9 + x}}{1 - \sqrt{8 - x}}\]
\[\lim_{x \to 1} \frac{\sqrt{3 + x} - \sqrt{5 - x}}{x^2 - 1}\]
\[\lim_{x \to 1} \frac{\sqrt{3 + x} - \sqrt{5 - x}}{x^2 - 1}\]
\[\lim_{x \to 1} \frac{\left( 2x - 3 \right) \left( \sqrt{x} - 1 \right)}{3 x^2 + 3x - 6}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 + x}}{\sqrt{1 + x^3} - \sqrt{1 + x}}\]
\[\lim_{x \to 1} \frac{ x^2 - \sqrt{x}}{\sqrt{x} - 1}\]
\[\lim_{h \to 0} \frac{\sqrt{x + h} - \sqrt{x}}{h}, x \neq 0\]
\[\lim_{x \to 0} \frac{5^x - 1}{\sqrt{4 + x} - 2}\]
\[\lim_{x \to 0} \frac{a^{mx} - 1}{b^{nx} - 1}, n \neq 0\]
\[\lim_{x \to 0} \frac{a^x + b^x - 2}{x}\]
\[\lim_{x \to 0} \frac{a^{mx} - b^{nx}}{x}\]
\[\lim_{x \to 0} \frac{a^x + b^x + c^x - 3}{x}\]
\[\lim_{x \to 0} \frac{a^{mx} - b^{nx}}{\sin kx}\]
\[\lim_{x \to 0} \frac{\sin 2x}{e^x - 1}\]
\[\lim_{x \to 0} \frac{e\sin x - 1}{x}\]
\[\lim_{x \to 0} \frac{e^{2x} - e^x}{\sin 2x}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{\log \left( 1 + x \right)}\]
\[\lim_{x \to 0} \frac{\log \left| 1 + x^3 \right|}{\sin^3 x}\]
`\lim_{x \to \pi/2} \frac{a^\cot x - a^\cos x}{\cot x - \cos x}`
\[\lim_{x \to 0} \frac{e^{3x} - e^{2x}}{x}\]
`\lim_{x \to 0} \frac{e^\tan x - 1}{\tan x}`
\[\lim_{x \to 0} \frac{e^{bx} - e^{ax}}{x} \text{ where } 0 < a < b\]
`\lim_{x \to 0} \frac{e^\tan x - 1}{x}`
\[\lim_{x \to 0} \frac{3^{2 + x} - 9}{x}\]
\[\lim_{x \to 0} \frac{a^x - a^{- x}}{x}\]
Write the value of \[\lim_{n \to \infty} \frac{n! + \left( n + 1 \right)!}{\left( n + 1 \right)! + \left( n + 2 \right)!} .\]
Write the value of \[\lim_{n \to \infty} \frac{1 + 2 + 3 + . . . + n}{n^2} .\]