Advertisements
Advertisements
Question
\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 + x}}{\sqrt{1 + x^3} - \sqrt{1 + x}}\]
Solution
\[\lim_{x \to 0} \left[ \frac{\sqrt{1 - x^2} - \sqrt{1 + x}}{\sqrt{1 + x^3} - \sqrt{1 + x}} \right]\] It is of the form \[\frac{0}{0}\]
Rationalising the numerator and the denominator:
\[\lim_{x \to 0} \left[ \frac{\left( \sqrt{1 + x^2} - \sqrt{1 + x} \right)}{1} \times \frac{\left( \sqrt{1 + x^2} + \sqrt{1 + x} \right)}{\left( \sqrt{1 + x^2} + \sqrt{1 + x} \right)} \times \frac{1}{\left( \sqrt{1 + x^3} - \sqrt{1 + x} \right)} \times \frac{\left( \sqrt{1 + x^3} - \sqrt{1 + x} \right)}{\left( \sqrt{1 + x^3} + \sqrt{1 + x} \right)} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\left[ \left( 1 + x^2 \right) - \left( 1 + x \right) \right]}{\left[ \left( 1 + x^3 \right) - \left( 1 + x \right) \right]} \times \frac{\left( \sqrt{1 + x^3} + \sqrt{1 + x} \right)}{\left( \sqrt{1 + x^2} + \sqrt{1 + x} \right)} \right]\]
\[ = \lim_{x \to 0} \left[ \left( \frac{x^2 - x}{x^3 - x} \right) \times \frac{\left( \sqrt{1 + x^3} + \sqrt{1 + x} \right)}{\left( \sqrt{1 + x^2} + \sqrt{1 + x} \right)} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{x\left( x - 1 \right)}{x\left( x^2 - 1 \right)} \frac{\left( \sqrt{1 + x^3} + \sqrt{1 + x} \right)}{\left( \sqrt{1 + x^2} + \sqrt{1 + x} \right)} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\left( x - 1 \right) \left( \sqrt{1 + x^3} + \sqrt{1 + x} \right)}{\left( x - 1 \right) \left( x + 1 \right) \left( \sqrt{1 + x^2} + \sqrt{1 + x} \right)} \right]\]
\[ = \frac{\left( \sqrt{1 + 0} + \sqrt{1 + 0} \right)}{\left( 0 + 1 \right) \left( \sqrt{1 + 0} + \sqrt{1 + 0} \right)}\]
\[ = \frac{2}{2}\]
\[ = 1\]
APPEARS IN
RELATED QUESTIONS
Evaluate `lim_(x -> 0) f(x)` where `f(x) = { (|x|/x, x != 0),(0, x = 0):}`
Find `lim_(x -> 0)` f(x), where `f(x) = {(x/|x|, x != 0),(0, x = 0):}`
If the function f(x) satisfies `lim_(x -> 1) (f(x) - 2)/(x^2 - 1) = pi`, evaluate `lim_(x -> 1) f(x)`.
if `f(x) = { (mx^2 + n, x < 0),(nx + m, 0<= x <= 1),(nx^3 + m, x > 1):}`
For what integers m and n does `lim_(x-> 0) f(x)` and `lim_(x -> 1) f(x)` exist?
\[\lim_{x \to 0} \frac{\sqrt{1 + x + x^2} - 1}{x}\]
\[\lim_{x \to 0} \frac{2x}{\sqrt{a + x} - \sqrt{a - x}}\]
\[\lim_{x \to 0} \frac{\sqrt{a^2 + x^2} - a}{x^2}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 - x}}{2x}\]
\[\lim_{x \to 3} \frac{\sqrt{x + 3} - \sqrt{6}}{x^2 - 9}\]
\[\lim_{x \to 0} \frac{\sqrt{a + x} - \sqrt{a}}{x\sqrt{a^2 + ax}}\]
\[\lim_{x \to 5} \frac{x - 5}{\sqrt{6x - 5} - \sqrt{4x + 5}}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{x}\]
\[\lim_{x \to a} \frac{x - a}{\sqrt{x} - \sqrt{a}}\]
\[\lim_{x \to 1} \frac{\sqrt{3 + x} - \sqrt{5 - x}}{x^2 - 1}\]
\[\lim_{x \to 1} \frac{\left( 2x - 3 \right) \left( \sqrt{x} - 1 \right)}{3 x^2 + 3x - 6}\]
\[\lim_{x \to \sqrt{6}} \frac{\sqrt{5 + 2x} - \left( \sqrt{3} + \sqrt{2} \right)}{x^2 - 6}\]
\[\lim_{x \to \sqrt{2}} \frac{\sqrt{3 + 2x} - \left( \sqrt{2} + 1 \right)}{x^2 - 2}\]
\[\lim_{x \to 0} \frac{a^x + b^x - 2}{x}\]
\[\lim_{x \to 0} \frac{a^x + b^x + c^x - 3}{x}\]
\[\lim_{x \to 0} \frac{5^x + 3^x + 2^x - 3}{x}\]
\[\lim_{x \to \infty} \left( a^{1/x} - 1 \right)x\]
\[\lim_{x \to 0} \frac{a^x + b^ x - c^x - d^x}{x}\]
\[\lim_{x \to 0} \frac{\sin 2x}{e^x - 1}\]
\[\lim_{x \to 0} \frac{\log \left| 1 + x^3 \right|}{\sin^3 x}\]
\[\lim_{x \to 0} \frac{e^x - x - 1}{2}\]
`\lim_{x \to 0} \frac{e^x - e^\sin x}{x - \sin x}`
\[\lim_{x \to 0} \frac{x\left( e^x - 1 \right)}{1 - \cos x}\]
\[\lim_{x \to a} \left\{ \frac{\sin x}{\sin a} \right\}^\frac{1}{x - a}\]
\[\lim_{x \to \infty} \left\{ \frac{3 x^2 + 1}{4 x^2 - 1} \right\}^\frac{x^3}{1 + x}\]
\[\lim_{x \to 0} \left\{ \frac{e^x + e^{- x} - 2}{x^2} \right\}^{1/ x^2}\]
Write the value of \[\lim_{x \to - \infty} \left( 3x + \sqrt{9 x^2 - x} \right) .\]
Evaluate: `lim_(h -> 0) (sqrt(x + h) - sqrt(x))/h`