English

Lim X → 0 √ 1 + X 2 − √ 1 + X √ 1 + X 3 − √ 1 + X - Mathematics

Advertisements
Advertisements

Question

\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 + x}}{\sqrt{1 + x^3} - \sqrt{1 + x}}\] 

Solution

\[\lim_{x \to 0} \left[ \frac{\sqrt{1 - x^2} - \sqrt{1 + x}}{\sqrt{1 + x^3} - \sqrt{1 + x}} \right]\] It is of the form \[\frac{0}{0}\] 

Rationalising the numerator and the denominator: 

\[\lim_{x \to 0} \left[ \frac{\left( \sqrt{1 + x^2} - \sqrt{1 + x} \right)}{1} \times \frac{\left( \sqrt{1 + x^2} + \sqrt{1 + x} \right)}{\left( \sqrt{1 + x^2} + \sqrt{1 + x} \right)} \times \frac{1}{\left( \sqrt{1 + x^3} - \sqrt{1 + x} \right)} \times \frac{\left( \sqrt{1 + x^3} - \sqrt{1 + x} \right)}{\left( \sqrt{1 + x^3} + \sqrt{1 + x} \right)} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\left[ \left( 1 + x^2 \right) - \left( 1 + x \right) \right]}{\left[ \left( 1 + x^3 \right) - \left( 1 + x \right) \right]} \times \frac{\left( \sqrt{1 + x^3} + \sqrt{1 + x} \right)}{\left( \sqrt{1 + x^2} + \sqrt{1 + x} \right)} \right]\]
\[ = \lim_{x \to 0} \left[ \left( \frac{x^2 - x}{x^3 - x} \right) \times \frac{\left( \sqrt{1 + x^3} + \sqrt{1 + x} \right)}{\left( \sqrt{1 + x^2} + \sqrt{1 + x} \right)} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{x\left( x - 1 \right)}{x\left( x^2 - 1 \right)} \frac{\left( \sqrt{1 + x^3} + \sqrt{1 + x} \right)}{\left( \sqrt{1 + x^2} + \sqrt{1 + x} \right)} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\left( x - 1 \right) \left( \sqrt{1 + x^3} + \sqrt{1 + x} \right)}{\left( x - 1 \right) \left( x + 1 \right) \left( \sqrt{1 + x^2} + \sqrt{1 + x} \right)} \right]\]
\[ = \frac{\left( \sqrt{1 + 0} + \sqrt{1 + 0} \right)}{\left( 0 + 1 \right) \left( \sqrt{1 + 0} + \sqrt{1 + 0} \right)}\]
\[ = \frac{2}{2}\]
\[ = 1\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.4 [Page 29]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.4 | Q 29 | Page 29

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate `lim_(x -> 0) f(x)` where `f(x) = { (|x|/x, x != 0),(0, x = 0):}`


Find `lim_(x -> 0)` f(x), where `f(x) = {(x/|x|, x != 0),(0, x = 0):}`


If the function f(x) satisfies `lim_(x -> 1) (f(x) - 2)/(x^2 - 1) = pi`, evaluate `lim_(x -> 1) f(x)`.


if `f(x) = { (mx^2 + n, x < 0),(nx + m, 0<= x <= 1),(nx^3 + m, x > 1):}`

For what integers m and n does `lim_(x-> 0) f(x)` and `lim_(x -> 1) f(x)` exist?


\[\lim_{x \to 0} \frac{\sqrt{1 + x + x^2} - 1}{x}\]


\[\lim_{x \to 0} \frac{2x}{\sqrt{a + x} - \sqrt{a - x}}\] 


\[\lim_{x \to 0} \frac{\sqrt{a^2 + x^2} - a}{x^2}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 - x}}{2x}\]


\[\lim_{x \to 3} \frac{\sqrt{x + 3} - \sqrt{6}}{x^2 - 9}\] 


\[\lim_{x \to 0} \frac{\sqrt{a + x} - \sqrt{a}}{x\sqrt{a^2 + ax}}\]


\[\lim_{x \to 5} \frac{x - 5}{\sqrt{6x - 5} - \sqrt{4x + 5}}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{x}\] 


\[\lim_{x \to a} \frac{x - a}{\sqrt{x} - \sqrt{a}}\]


\[\lim_{x \to 1} \frac{\sqrt{3 + x} - \sqrt{5 - x}}{x^2 - 1}\] 


\[\lim_{x \to 1} \frac{\left( 2x - 3 \right) \left( \sqrt{x} - 1 \right)}{3 x^2 + 3x - 6}\]


\[\lim_{x \to \sqrt{6}} \frac{\sqrt{5 + 2x} - \left( \sqrt{3} + \sqrt{2} \right)}{x^2 - 6}\] 

 


\[\lim_{x \to \sqrt{2}} \frac{\sqrt{3 + 2x} - \left( \sqrt{2} + 1 \right)}{x^2 - 2}\] 


\[\lim_{x \to 0} \frac{a^x + b^x - 2}{x}\]


\[\lim_{x \to 0} \frac{a^x + b^x + c^x - 3}{x}\] 


\[\lim_{x \to 0} \frac{5^x + 3^x + 2^x - 3}{x}\]


\[\lim_{x \to \infty} \left( a^{1/x} - 1 \right)x\]


\[\lim_{x \to 0} \frac{a^x + b^ x - c^x - d^x}{x}\]


\[\lim_{x \to 0} \frac{\sin 2x}{e^x - 1}\] 


\[\lim_{x \to 0} \frac{\log \left| 1 + x^3 \right|}{\sin^3 x}\] 

 


\[\lim_{x \to 0} \frac{e^x - x - 1}{2}\] 


`\lim_{x \to 0} \frac{e^x - e^\sin x}{x - \sin x}`


\[\lim_{x \to 0} \frac{x\left( e^x - 1 \right)}{1 - \cos x}\]


\[\lim_{x \to a} \left\{ \frac{\sin x}{\sin a} \right\}^\frac{1}{x - a}\]


\[\lim_{x \to \infty} \left\{ \frac{3 x^2 + 1}{4 x^2 - 1} \right\}^\frac{x^3}{1 + x}\]


\[\lim_{x \to 0} \left\{ \frac{e^x + e^{- x} - 2}{x^2} \right\}^{1/ x^2}\]


Write the value of \[\lim_{x \to - \infty} \left( 3x + \sqrt{9 x^2 - x} \right) .\]


Evaluate: `lim_(h -> 0) (sqrt(x + h) - sqrt(x))/h`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×