English

Lim X → 0 { E X + E − X − 2 X 2 } 1 / X 2 - Mathematics

Advertisements
Advertisements

Question

\[\lim_{x \to 0} \left\{ \frac{e^x + e^{- x} - 2}{x^2} \right\}^{1/ x^2}\]

Solution

\[\lim_{x \to 0} \left[ \frac{e^x + e^{- x} - 2}{x^2} \right]^\left( \frac{1}{x^2} \right) \]
\[ = \lim_{x \to 0} \left[ 1 + \frac{e^x + e^{- x} - 2}{x^2} - 1 \right]^\left( \frac{1}{x^2} \right) \]
\[ = e {}^\lim_{x \to 0} \left( \frac{e^x + e^{- x} - 2}{x^2} - 1 \right) \times \left( \frac{1}{x^2} \right) \]
\[ \because e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . . . . . \propto \]
\[ e^{- x} = 1 - \frac{x}{1!} + \frac{x^2}{2!} - \frac{x^3}{3!} + . . . . . . \propto \]
\[ \Rightarrow e^x + e^{- x} = 2 + \frac{2 x^2}{2!} + \frac{2 x^4}{4!} + . . . . . \propto \]
\[ = e^\lim_{x \to 0} \left( \frac{2 + \frac{2 x^2}{2!} + \frac{2 x^4}{4!} . . . \propto - 2}{x^2} - 1 \right) \times \left( \frac{1}{x^2} \right) \]
\[ = e^\lim_{x \to 0} \left( \frac{\frac{2 x^2}{2!} + \frac{2 x^4}{4!} + . . . . . . \propto}{x^4} - \frac{1}{x^2} \right) \]
\[ = e^\lim_{x \to 0} \left( \frac{x^2 + \frac{x^4}{12} + . . . . . \propto - x^2}{x^4} \right) \]
\[ = e^\frac{1}{12}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.12 [Page 77]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.12 | Q 8 | Page 77

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Let a1, a2,..., an be fixed real numbers and define a function f ( x) = ( x − a1 ) ( x − a2 )...( x − an ).

What is `lim_(x -> a_1) f(x)` ? For some a ≠ a1, a2, ..., an, compute `lim_(x -> a) f(x)`


if `f(x) = { (mx^2 + n, x < 0),(nx + m, 0<= x <= 1),(nx^3 + m, x > 1):}`

For what integers m and n does `lim_(x-> 0) f(x)` and `lim_(x -> 1) f(x)` exist?


\[\lim_{x \to 0} \frac{2x}{\sqrt{a + x} - \sqrt{a - x}}\] 


\[\lim_{x \to 0} \frac{\sqrt{a^2 + x^2} - a}{x^2}\] 


\[\lim_{x \to 2} \frac{\sqrt{3 - x} - 1}{2 - x}\] 


\[\lim_{x \to 3} \frac{x - 3}{\sqrt{x - 2} - \sqrt{4 - x}}\] 


\[\lim_{x \to 1} \frac{x - 1}{\sqrt{x^2 + 3 - 2}}\] 


\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x^2 - 1}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x}\] 


\[\lim_{x \to 2} \frac{x - 2}{\sqrt{x} - \sqrt{2}}\] 


\[\lim_{x \to 5} \frac{x - 5}{\sqrt{6x - 5} - \sqrt{4x + 5}}\] 


\[\lim_{x \to 1} \frac{\sqrt{3 + x} - \sqrt{5 - x}}{x^2 - 1}\] 


\[\lim_{x \to 4} \frac{2 - \sqrt{x}}{4 - x}\]


\[\lim_{x \to 0} \frac{\sqrt{2 - x} - \sqrt{2 + x}}{x}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 + x}}{\sqrt{1 + x^3} - \sqrt{1 + x}}\] 


\[\lim_{x \to 0} \frac{5^x - 1}{\sqrt{4 + x} - 2}\]


\[\lim_{x \to 0} \frac{a^{mx} - 1}{b^{nx} - 1}, n \neq 0\]


\[\lim_{x \to 0} \frac{5^x + 3^x + 2^x - 3}{x}\]


\[\lim_{x \to 0} \frac{\sin 2x}{e^x - 1}\] 


\[\lim_{x \to 0} \frac{e^{2x} - e^x}{\sin 2x}\]


\[\lim_{x \to a} \frac{\log x - \log a}{x - a}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{\log \left( 1 + x \right)}\] 


`\lim_{x \to \pi/2} \frac{a^\cot x - a^\cos x}{\cot x - \cos x}`


\[\lim_{x \to 5} \frac{e^x - e^5}{x - 5}\]


`\lim_{x \to 0} \frac{e^\tan x - 1}{\tan x}`


`\lim_{x \to 0} \frac{e^\tan x - 1}{x}`


`\lim_{x \to 0} \frac{e^x - e^\sin x}{x - \sin x}`


\[\lim_{x \to \infty} \left\{ \frac{x^2 + 2x + 3}{2 x^2 + x + 5} \right\}^\frac{3x - 2}{3x + 2}\]


\[\lim_{x \to 0} \left\{ \frac{e^x + e^{- x} - 2}{x^2} \right\}^{1/ x^2}\]


\[\lim_{x \to a} \left\{ \frac{\sin x}{\sin a} \right\}^\frac{1}{x - a}\]


Write the value of \[\lim_{x \to - \infty} \left( 3x + \sqrt{9 x^2 - x} \right) .\]


Write the value of \[\lim_{x \to \pi/2} \frac{2x - \pi}{\cos x} .\] 


Evaluate: `lim_(x -> 2) (x^2 - 4)/(sqrt(3x - 2) - sqrt(x + 2))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×