Advertisements
Advertisements
Question
Write the value of \[\lim_{x \to \pi/2} \frac{2x - \pi}{\cos x} .\]
Solution
\[\lim_{x \to \frac{\pi}{2}} \left[ \frac{2x - \pi}{\cos x} \right]\]
\[LHL: \]
\[ \lim_{x \to \frac{\pi}{2}^-} \left[ \frac{2x - \pi}{\cos x} \right]\]
\[Let x = \frac{\pi}{2} - h\]
\[\text{ If } x \to \frac{\pi}{2}, \text{ then we have }: \]
\[ h \to 0\]
\[ = \lim_{h \to 0} \left[ \frac{2\left( \frac{\pi}{2} - h \right) - \pi}{\cos \left( \frac{\pi}{2} - h \right)} \right]\]
\[ = \lim_{h \to 0} \left[ \frac{\pi - 2h - \pi}{\sin h} \right]\]
\[ = - 2\]
\[RHL: \]
\[ \lim_{x \to \frac{\pi}{2}^+} \left[ \frac{2x - \pi}{\cos x} \right]\]
\[\text{ Let } x = \frac{\pi}{2} + h\]
\[\text{ If } x \to \frac{\pi}{2}, \text{ then we have }: \]
\[h \to 0\]
\[ = \lim_{h \to 0} \left[ \frac{2\left( \frac{\pi}{2} + h \right) - \pi}{\cos \left( \frac{\pi}{2} + h \right)} \right]\]
\[ = \lim_{h \to 0} \left[ \frac{2h}{- \sin h} \right]\]
\[ = - 2\]
\[ \Rightarrow \lim_{x \to \frac{\pi}{2}} \left( \frac{2x - \pi}{\cos x} \right) = - 2\]
APPEARS IN
RELATED QUESTIONS
Find `lim_(x -> 0)` f(x), where `f(x) = {(x/|x|, x != 0),(0, x = 0):}`
Let a1, a2,..., an be fixed real numbers and define a function f ( x) = ( x − a1 ) ( x − a2 )...( x − an ).
What is `lim_(x -> a_1) f(x)` ? For some a ≠ a1, a2, ..., an, compute `lim_(x -> a) f(x)`
\[\lim_{x \to 0} \frac{\sqrt{a^2 + x^2} - a}{x^2}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 - x}}{2x}\]
\[\lim_{x \to 1} \frac{x - 1}{\sqrt{x^2 + 3 - 2}}\]
\[\lim_{x \to 3} \frac{\sqrt{x + 3} - \sqrt{6}}{x^2 - 9}\]
\[\lim_{x \to 2} \frac{\sqrt{x^2 + 1} - \sqrt{5}}{x - 2}\]
\[\lim_{x \to 2} \frac{\sqrt{1 + 4x} - \sqrt{5 + 2x}}{x - 2}\]
\[\lim_{x \to 1} \frac{\sqrt{3 + x} - \sqrt{5 - x}}{x^2 - 1}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{x}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x + x^2} - \sqrt{x + 1}}{2 x^2}\]
\[\lim_{x \to 4} \frac{2 - \sqrt{x}}{4 - x}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + 3x} - \sqrt{1 - 3x}}{x}\]
\[\lim_{x \to 0} \frac{\sqrt{2 - x} - \sqrt{2 + x}}{x}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 + x}}{\sqrt{1 + x^3} - \sqrt{1 + x}}\]
\[\lim_{x \to 1} \frac{ x^2 - \sqrt{x}}{\sqrt{x} - 1}\]
\[\lim_{x \to \sqrt{10}} \frac{\sqrt{7 + 2x} - \left( \sqrt{5} + \sqrt{2} \right)}{x^2 - 10}\]
\[\lim_{x \to 0} \frac{a^x + a^{- x} - 2}{x^2}\]
\[\lim_{x \to 0} \frac{a^{mx} - 1}{b^{nx} - 1}, n \neq 0\]
\[\lim_{x \to 2} \frac{x - 2}{\log_a \left( x - 1 \right)}\]
\[\lim_{x \to \infty} \left( a^{1/x} - 1 \right)x\]
\[\lim_{x \to 0} \frac{a^{mx} - b^{nx}}{\sin kx}\]
\[\lim_{x \to 0} \frac{e^x - 1 + \sin x}{x}\]
\[\lim_{x \to 0} \frac{e\sin x - 1}{x}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{\log \left( 1 + x \right)}\]
\[\lim_{x \to 0} \frac{e^x - 1}{\sqrt{1 - \cos x}}\]
\[\lim_{x \to 5} \frac{e^x - e^5}{x - 5}\]
\[\lim_{x \to 0} \frac{e^{x + 2} - e^2}{x}\]
\[\lim_{x \to 0} \frac{e^{3 + x} - \sin x - e^3}{x}\]
`\lim_{x \to 0} \frac{e^\tan x - 1}{\tan x}`
\[\lim_{x \to 0} \frac{e^{bx} - e^{ax}}{x} \text{ where } 0 < a < b\]
`\lim_{x \to 0} \frac{e^\tan x - 1}{x}`
`\lim_{x \to 0} \frac{e^x - e^\sin x}{x - \sin x}`
\[\lim_{x \to \infty} \left\{ \frac{3 x^2 + 1}{4 x^2 - 1} \right\}^\frac{x^3}{1 + x}\]
Write the value of \[\lim_{x \to - \infty} \left( 3x + \sqrt{9 x^2 - x} \right) .\]
Evaluate: `lim_(x -> 2) (x^2 - 4)/(sqrt(3x - 2) - sqrt(x + 2))`