English

Lim X → 1 √ 3 + X − √ 5 − X X 2 − 1 - Mathematics

Advertisements
Advertisements

Question

\[\lim_{x \to 1} \frac{\sqrt{3 + x} - \sqrt{5 - x}}{x^2 - 1}\] 

Solution

\[\lim_{x \to 1} \left[ \frac{\sqrt{3 + x} - \sqrt{5 - x}}{x^2 - 1} \right]\] It is of the form \[\frac{0}{0}\] 

Rationalising the numerator: 

\[\lim_{x \to 1} \left[ \frac{\left( \sqrt{3 + x} - \sqrt{5 - x} \right)\left( \sqrt{3 + x} + \sqrt{5 - x} \right)}{\left( x - 1 \right)\left( x + 1 \right)\left( \sqrt{3 + x} + \sqrt{5 - x} \right)} \right]\] 

= \[\lim_{x \to 1} \left[ \frac{\left( 3 + x \right) - \left( 5 - x \right)}{\left( x - 1 \right)\left( x + 1 \right)\left\{ \sqrt{3 + x} + \sqrt{5 - x} \right\}} \right]\] 

=  \[\lim_{x \to 1} \left[ \frac{2x - 2}{\left( x - 1 \right)\left( x + 1 \right) \left\{ \sqrt{3 + x} + \sqrt{5 - x} \right\}} \right]\]

= \[\lim_{x \to 1} \left[ \frac{2\left( x - 1 \right)}{\left( x - 1 \right)\left( x + 1 \right)\left\{ \sqrt{3 + x} + \sqrt{5 - x} \right\}} \right]\] 

= \[\frac{2}{2 \left( \sqrt{4} + \sqrt{4} \right)}\]

=  \[\frac{1}{4}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.4 [Page 28]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.4 | Q 20 | Page 28

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find `lim_(x -> 1)` f(x), where `f(x) = {(x^2 -1, x <= 1), (-x^2 -1, x > 1):}`


Evaluate `lim_(x -> 0) f(x)` where `f(x) = { (|x|/x, x != 0),(0, x = 0):}`


Let a1, a2,..., an be fixed real numbers and define a function f ( x) = ( x − a1 ) ( x − a2 )...( x − an ).

What is `lim_(x -> a_1) f(x)` ? For some a ≠ a1, a2, ..., an, compute `lim_(x -> a) f(x)`


if `f(x) = { (mx^2 + n, x < 0),(nx + m, 0<= x <= 1),(nx^3 + m, x > 1):}`

For what integers m and n does `lim_(x-> 0) f(x)` and `lim_(x -> 1) f(x)` exist?


\[\lim_{x \to 0} \frac{\sqrt{a^2 + x^2} - a}{x^2}\] 


\[\lim_{x \to 0} \frac{x}{\sqrt{1 + x} - \sqrt{1 - x}}\] 


\[\lim_{x \to 3} \frac{\sqrt{x + 3} - \sqrt{6}}{x^2 - 9}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x}\] 


\[\lim_{x \to 2} \frac{x - 2}{\sqrt{x} - \sqrt{2}}\] 


\[\lim_{x \to 7} \frac{4 - \sqrt{9 + x}}{1 - \sqrt{8 - x}}\] 


\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x^3 - 1}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x + x^2} - \sqrt{x + 1}}{2 x^2}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + 3x} - \sqrt{1 - 3x}}{x}\]


\[\lim_{x \to 0} \frac{\sqrt{2 - x} - \sqrt{2 + x}}{x}\] 


\[\lim_{x \to 1} \frac{\left( 2x - 3 \right) \left( \sqrt{x} - 1 \right)}{3 x^2 + 3x - 6}\]


\[\lim_{x \to \sqrt{6}} \frac{\sqrt{5 + 2x} - \left( \sqrt{3} + \sqrt{2} \right)}{x^2 - 6}\] 

 


\[\lim_{x \to 0} \frac{\log \left( 1 + x \right)}{3^x - 1}\]


\[\lim_{x \to 0} \frac{a^x + b^x - 2}{x}\]


\[\lim_{x \to 2} \frac{x - 2}{\log_a \left( x - 1 \right)}\]


\[\lim_{x \to \infty} \left( a^{1/x} - 1 \right)x\]


\[\lim_{x \to 0} \frac{e^x - 1 + \sin x}{x}\]


\[\lim_{x \to 0} \frac{\sin 2x}{e^x - 1}\] 


\[\lim_{x \to 0} \frac{e^{2x} - e^x}{\sin 2x}\]


\[\lim_{x \to a} \frac{\log x - \log a}{x - a}\] 


\[\lim_{x \to 0} \frac{\log \left| 1 + x^3 \right|}{\sin^3 x}\] 

 


`\lim_{x \to \pi/2} \frac{a^\cot x - a^\cos x}{\cot x - \cos x}`


\[\lim_{x \to 0} \frac{e^x - x - 1}{2}\] 


`\lim_{x \to 0} \frac{e^\tan x - 1}{\tan x}`


`\lim_{x \to 0} \frac{e^\tan x - 1}{x}`


`\lim_{x \to 0} \frac{e^x - e^\sin x}{x - \sin x}`


\[\lim_{x \to 0} \frac{x\left( e^x - 1 \right)}{1 - \cos x}\]


\[\lim_{x \to 0} \frac{\sin x}{\sqrt{1 + x} - 1} .\] 


Write the value of \[\lim_{x \to - \infty} \left( 3x + \sqrt{9 x^2 - x} \right) .\]


Write the value of \[\lim_{n \to \infty} \frac{1 + 2 + 3 + . . . + n}{n^2} .\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×