English

Lim X → 0 X √ 1 + X − √ 1 − X - Mathematics

Advertisements
Advertisements

Question

\[\lim_{x \to 0} \frac{x}{\sqrt{1 + x} - \sqrt{1 - x}}\] 

Solution

\[\lim_{x \to 0} \left[ \frac{x}{\sqrt{1 + x} - \sqrt{1 - x}} \right]\]It is of the form \[\frac{0}{0}\] 

Rationalising the denominator:
\[\lim_{x \to 0} \left[ \frac{x}{\left( \sqrt{1 + x} - \sqrt{1 - x} \right)} \times \frac{\left( \sqrt{1 + x} + \sqrt{1 - x} \right)}{\left( \sqrt{1 + x} + \sqrt{1 - x} \right)} \right]\] 

= \[\lim_{x \to 0} \left[ \frac{x\left( \sqrt{1 + x} + \sqrt{1 - x} \right)}{\left( 1 + x \right) - \left( 1 - x \right)} \right]\] 

=  \[\lim_{x \to 0} \left[ \frac{x\left( \sqrt{1 + x} + \sqrt{1 - x} \right)}{2x} \right]\] 

=  \[\frac{\sqrt{1} + \sqrt{1}}{2}\] 

=  \[\frac{2}{2}\] 

= 1

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.4 [Page 28]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.4 | Q 7 | Page 28

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate `lim_(x -> 0) f(x)` where `f(x) = { (|x|/x, x != 0),(0, x = 0):}`


Let a1, a2,..., an be fixed real numbers and define a function f ( x) = ( x − a1 ) ( x − a2 )...( x − an ).

What is `lim_(x -> a_1) f(x)` ? For some a ≠ a1, a2, ..., an, compute `lim_(x -> a) f(x)`


\[\lim_{x \to 0} \frac{2x}{\sqrt{a + x} - \sqrt{a - x}}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x}\] 


\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x^3 - 1}\] 


\[\lim_{x \to 1} \frac{\sqrt{3 + x} - \sqrt{5 - x}}{x^2 - 1}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x + x^2} - \sqrt{x + 1}}{2 x^2}\] 


\[\lim_{x \to 0} \frac{\sqrt{2 - x} - \sqrt{2 + x}}{x}\] 


\[\lim_{x \to 1} \frac{\sqrt{3 + x} - \sqrt{5 - x}}{x^2 - 1}\] 


\[\lim_{x \to 1} \frac{\left( 2x - 3 \right) \left( \sqrt{x} - 1 \right)}{3 x^2 + 3x - 6}\]


\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 + x}}{\sqrt{1 + x^3} - \sqrt{1 + x}}\] 


\[\lim_{x \to 1} \frac{ x^2 - \sqrt{x}}{\sqrt{x} - 1}\]


\[\lim_{x \to \sqrt{10}} \frac{\sqrt{7 + 2x} - \left( \sqrt{5} + \sqrt{2} \right)}{x^2 - 10}\] 


\[\lim_{x \to \sqrt{6}} \frac{\sqrt{5 + 2x} - \left( \sqrt{3} + \sqrt{2} \right)}{x^2 - 6}\] 

 


\[\lim_{x \to 0} \frac{a^x + a^{- x} - 2}{x^2}\]


\[\lim_{x \to 0} \frac{a^{mx} - 1}{b^{nx} - 1}, n \neq 0\]


\[\lim_{x \to 0} \frac{a^x + b^x + c^x - 3}{x}\] 


\[\lim_{x \to 2} \frac{x - 2}{\log_a \left( x - 1 \right)}\]


\[\lim_{x \to 0} \frac{5^x + 3^x + 2^x - 3}{x}\]


\[\lim_{x \to 0} \frac{e^x - 1 + \sin x}{x}\]


\[\lim_{x \to 0} \frac{e^{2x} - e^x}{\sin 2x}\]


\[\lim_{x \to 0} \frac{x\left( 2^x - 1 \right)}{1 - \cos x}\] 


`\lim_{x \to \pi/2} \frac{a^\cot x - a^\cos x}{\cot x - \cos x}`


\[\lim_{x \to 0} \frac{e^{3 + x} - \sin x - e^3}{x}\] 


`\lim_{x \to 0} \frac{e^\tan x - 1}{\tan x}`


`\lim_{x \to 0} \frac{e^\tan x - 1}{x}`


`\lim_{x \to 0} \frac{e^x - e^\sin x}{x - \sin x}`


\[\lim_{x \to 0} \frac{a^x - a^{- x}}{x}\]


\[\lim_{x \to 0} \frac{x\left( e^x - 1 \right)}{1 - \cos x}\]


\[\lim_{x \to a} \left\{ \frac{\sin x}{\sin a} \right\}^\frac{1}{x - a}\]


\[\lim_{x \to 0} \frac{\sin x}{\sqrt{1 + x} - 1} .\] 


Evaluate: `lim_(h -> 0) (sqrt(x + h) - sqrt(x))/h`


Evaluate: `lim_(x -> 2) (x^2 - 4)/(sqrt(3x - 2) - sqrt(x + 2))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×