Advertisements
Advertisements
Question
\[\lim_{x \to \sqrt{10}} \frac{\sqrt{7 + 2x} - \left( \sqrt{5} + \sqrt{2} \right)}{x^2 - 10}\]
Solution
\[\lim_{x \to \sqrt{10}} \left[ \frac{\sqrt{7 + 2x} - \left( \sqrt{5} + \sqrt{2} \right)}{x^2 - \left( \sqrt{10} \right)^2} \right]\]
= \[\lim_{x \to \sqrt{10}} \left[ \frac{\sqrt{7 + 2x} - \sqrt{\left( \sqrt{5} + \sqrt{2} \right)^2}}{\left( x - \sqrt{10} \right)\left( x + \sqrt{10} \right)} \right]\]
= \[\lim_{x \to \sqrt{10}} \left[ \frac{\sqrt{7 + 2x} - \sqrt{5 + 2 + 2\sqrt{5}\sqrt{2}}}{\left( x - \sqrt{10} \right)\left( x + \sqrt{10} \right)} \right]\]
= \[\lim_{x \to \sqrt{10}} \left[ \frac{\sqrt{7 + 2x} - \sqrt{7 + 2\sqrt{10}}}{\left( x - \sqrt{10} \right)\left( x + \sqrt{10} \right)} \right]\]
Rationalising the numerator:
\[\lim_{x \to \sqrt{10}} \left[ \frac{\left( \sqrt{7 + 2x} - \sqrt{7 + 2\sqrt{10}} \right) \left( \sqrt{7 + 2x} + \sqrt{7 + 2\sqrt{10}} \right)}{\left( x - \sqrt{10} \right)\left( x + \sqrt{10} \right) \left( \sqrt{7 + 2x} + \sqrt{7 + 2\sqrt{10}} \right)} \right]\]
= \[\lim_{x \to \sqrt{10}} \left[ \frac{\left( 7 + 2x \right) - \left( 7 + 2\sqrt{10} \right)}{\left( x - \sqrt{10} \right)\left( x + \sqrt{10} \right) \left( \sqrt{7 + 2x} + \sqrt{7 + 2\sqrt{10}} \right)} \right]\]
= \[\lim_{x \to \sqrt{10}} \left[ \frac{2\left( x - \sqrt{10} \right)}{\left( x - \sqrt{10} \right)\left( x + \sqrt{10} \right) \left( \sqrt{7 + 2x} + \sqrt{7 + 2\sqrt{10}} \right)} \right]\]
= \[\frac{2}{\left( \sqrt{10} + \sqrt{10} \right) \left( 2\sqrt{7 + 2\sqrt{10}} \right)}\]
\[= \frac{2}{\left( 2\sqrt{10} \right) \times 2\sqrt{7 + 2\sqrt{10}}}\]
\[ = \frac{1}{2\sqrt{10}\sqrt{\left( \sqrt{5} + \sqrt{2} \right)^2}}\]
= \[\frac{1}{2\sqrt{10}\left( \sqrt{5} + \sqrt{2} \right)} \times \frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} - \sqrt{2}}\]
\[= \frac{1}{2\sqrt{10}}\left[ \frac{\sqrt{5} - \sqrt{2}}{\left( \sqrt{5} \right)^2 - \left( \sqrt{2} \right)^2} \right]\]
= \[\frac{\sqrt{5} - \sqrt{2}}{6\sqrt{10}}\]
APPEARS IN
RELATED QUESTIONS
Evaluate `lim_(x -> 0) f(x)` where `f(x) = { (|x|/x, x != 0),(0, x = 0):}`
Find `lim_(x -> 0)` f(x), where `f(x) = {(x/|x|, x != 0),(0, x = 0):}`
Let a1, a2,..., an be fixed real numbers and define a function f ( x) = ( x − a1 ) ( x − a2 )...( x − an ).
What is `lim_(x -> a_1) f(x)` ? For some a ≠ a1, a2, ..., an, compute `lim_(x -> a) f(x)`
\[\lim_{x \to 0} \frac{\sqrt{a^2 + x^2} - a}{x^2}\]
\[\lim_{x \to 2} \frac{\sqrt{3 - x} - 1}{2 - x}\]
\[\lim_{x \to 3} \frac{\sqrt{x + 3} - \sqrt{6}}{x^2 - 9}\]
\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x^2 - 1}\]
\[\lim_{x \to 0} \frac{\sqrt{a + x} - \sqrt{a}}{x\sqrt{a^2 + ax}}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{x}\]
\[\lim_{x \to 4} \frac{2 - \sqrt{x}}{4 - x}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + 3x} - \sqrt{1 - 3x}}{x}\]
\[\lim_{x \to 1} \frac{\left( 2x - 3 \right) \left( \sqrt{x} - 1 \right)}{3 x^2 + 3x - 6}\]
\[\lim_{x \to 1} \frac{ x^2 - \sqrt{x}}{\sqrt{x} - 1}\]
\[\lim_{x \to 0} \frac{a^x + a^{- x} - 2}{x^2}\]
\[\lim_{x \to 0} \frac{a^x + b^x - 2}{x}\]
\[\lim_{x \to 0} \frac{9^x - 2 . 6^x + 4^x}{x^2}\]
\[\lim_{x \to 0} \frac{a^{mx} - b^{nx}}{x}\]
\[\lim_{x \to 2} \frac{x - 2}{\log_a \left( x - 1 \right)}\]
\[\lim_{x \to 0} \frac{a^{mx} - b^{nx}}{\sin kx}\]
\[\lim_{x \to a} \frac{\log x - \log a}{x - a}\]
`\lim_{x \to \pi/2} \frac{a^\cot x - a^\cos x}{\cot x - \cos x}`
\[\lim_{x \to 0} \frac{e^{x + 2} - e^2}{x}\]
\[\lim_{x \to 0} \frac{e^{bx} - e^{ax}}{x} \text{ where } 0 < a < b\]
`\lim_{x \to 0} \frac{e^x - e^\sin x}{x - \sin x}`
\[\lim_{x \to 0} \frac{3^{2 + x} - 9}{x}\]
\[\lim_{x \to 0} \frac{a^x - a^{- x}}{x}\]
\[\lim_{x \to \pi/2} \frac{2^{- \cos x} - 1}{x\left( x - \frac{\pi}{2} \right)}\]
\[\lim_{x \to \infty} \left\{ \frac{x^2 + 2x + 3}{2 x^2 + x + 5} \right\}^\frac{3x - 2}{3x + 2}\]
\[\lim_{x \to 1} \left\{ \frac{x^3 + 2 x^2 + x + 1}{x^2 + 2x + 3} \right\}^\frac{1 - \cos \left( x - 1 \right)}{\left( x - 1 \right)^2}\]
\[\lim_{x \to \infty} \left\{ \frac{3 x^2 + 1}{4 x^2 - 1} \right\}^\frac{x^3}{1 + x}\]
Let f(x) be a polynomial of degree 4 having extreme values at x = 1 and x = 2. If `lim_(x rightarrow 0) ((f(x))/x^2 + 1)` = 3 then f(–1) is equal to ______.