English

Lim X → √ 10 √ 7 + 2 X − ( √ 5 + √ 2 ) X 2 − 10 - Mathematics

Advertisements
Advertisements

Question

\[\lim_{x \to \sqrt{10}} \frac{\sqrt{7 + 2x} - \left( \sqrt{5} + \sqrt{2} \right)}{x^2 - 10}\] 

Solution

\[\lim_{x \to \sqrt{10}} \left[ \frac{\sqrt{7 + 2x} - \left( \sqrt{5} + \sqrt{2} \right)}{x^2 - \left( \sqrt{10} \right)^2} \right]\] 

= \[\lim_{x \to \sqrt{10}} \left[ \frac{\sqrt{7 + 2x} - \sqrt{\left( \sqrt{5} + \sqrt{2} \right)^2}}{\left( x - \sqrt{10} \right)\left( x + \sqrt{10} \right)} \right]\]

=  \[\lim_{x \to \sqrt{10}} \left[ \frac{\sqrt{7 + 2x} - \sqrt{5 + 2 + 2\sqrt{5}\sqrt{2}}}{\left( x - \sqrt{10} \right)\left( x + \sqrt{10} \right)} \right]\] 

=  \[\lim_{x \to \sqrt{10}} \left[ \frac{\sqrt{7 + 2x} - \sqrt{7 + 2\sqrt{10}}}{\left( x - \sqrt{10} \right)\left( x + \sqrt{10} \right)} \right]\] 

Rationalising the numerator:

\[\lim_{x \to \sqrt{10}} \left[ \frac{\left( \sqrt{7 + 2x} - \sqrt{7 + 2\sqrt{10}} \right) \left( \sqrt{7 + 2x} + \sqrt{7 + 2\sqrt{10}} \right)}{\left( x - \sqrt{10} \right)\left( x + \sqrt{10} \right) \left( \sqrt{7 + 2x} + \sqrt{7 + 2\sqrt{10}} \right)} \right]\] 

= \[\lim_{x \to \sqrt{10}} \left[ \frac{\left( 7 + 2x \right) - \left( 7 + 2\sqrt{10} \right)}{\left( x - \sqrt{10} \right)\left( x + \sqrt{10} \right) \left( \sqrt{7 + 2x} + \sqrt{7 + 2\sqrt{10}} \right)} \right]\]

=  \[\lim_{x \to \sqrt{10}} \left[ \frac{2\left( x - \sqrt{10} \right)}{\left( x - \sqrt{10} \right)\left( x + \sqrt{10} \right) \left( \sqrt{7 + 2x} + \sqrt{7 + 2\sqrt{10}} \right)} \right]\] 

=  \[\frac{2}{\left( \sqrt{10} + \sqrt{10} \right) \left( 2\sqrt{7 + 2\sqrt{10}} \right)}\] 

\[= \frac{2}{\left( 2\sqrt{10} \right) \times 2\sqrt{7 + 2\sqrt{10}}}\]
\[ = \frac{1}{2\sqrt{10}\sqrt{\left( \sqrt{5} + \sqrt{2} \right)^2}}\] 

=  \[\frac{1}{2\sqrt{10}\left( \sqrt{5} + \sqrt{2} \right)} \times \frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} - \sqrt{2}}\] 

\[= \frac{1}{2\sqrt{10}}\left[ \frac{\sqrt{5} - \sqrt{2}}{\left( \sqrt{5} \right)^2 - \left( \sqrt{2} \right)^2} \right]\]
= \[\frac{\sqrt{5} - \sqrt{2}}{6\sqrt{10}}\] 

 

 

 

 
shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.4 [Page 29]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.4 | Q 32 | Page 29

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate `lim_(x -> 0) f(x)` where `f(x) = { (|x|/x, x != 0),(0, x = 0):}`


Find `lim_(x -> 0)` f(x), where `f(x) = {(x/|x|, x != 0),(0, x = 0):}`


Let a1, a2,..., an be fixed real numbers and define a function f ( x) = ( x − a1 ) ( x − a2 )...( x − an ).

What is `lim_(x -> a_1) f(x)` ? For some a ≠ a1, a2, ..., an, compute `lim_(x -> a) f(x)`


\[\lim_{x \to 0} \frac{\sqrt{a^2 + x^2} - a}{x^2}\] 


\[\lim_{x \to 2} \frac{\sqrt{3 - x} - 1}{2 - x}\] 


\[\lim_{x \to 3} \frac{\sqrt{x + 3} - \sqrt{6}}{x^2 - 9}\] 


\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x^2 - 1}\] 


\[\lim_{x \to 0} \frac{\sqrt{a + x} - \sqrt{a}}{x\sqrt{a^2 + ax}}\]


\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{x}\] 


\[\lim_{x \to 4} \frac{2 - \sqrt{x}}{4 - x}\]


\[\lim_{x \to 0} \frac{\sqrt{1 + 3x} - \sqrt{1 - 3x}}{x}\]


\[\lim_{x \to 1} \frac{\left( 2x - 3 \right) \left( \sqrt{x} - 1 \right)}{3 x^2 + 3x - 6}\]


\[\lim_{x \to 1} \frac{ x^2 - \sqrt{x}}{\sqrt{x} - 1}\]


\[\lim_{x \to 0} \frac{a^x + a^{- x} - 2}{x^2}\]


\[\lim_{x \to 0} \frac{a^x + b^x - 2}{x}\]


\[\lim_{x \to 0} \frac{9^x - 2 . 6^x + 4^x}{x^2}\] 


\[\lim_{x \to 0} \frac{a^{mx} - b^{nx}}{x}\] 


\[\lim_{x \to 2} \frac{x - 2}{\log_a \left( x - 1 \right)}\]


\[\lim_{x \to 0} \frac{a^{mx} - b^{nx}}{\sin kx}\]


\[\lim_{x \to a} \frac{\log x - \log a}{x - a}\] 


`\lim_{x \to \pi/2} \frac{a^\cot x - a^\cos x}{\cot x - \cos x}`


\[\lim_{x \to 0} \frac{e^{x + 2} - e^2}{x}\] 


\[\lim_{x \to 0} \frac{e^{bx} - e^{ax}}{x} \text{ where } 0 < a < b\] 


`\lim_{x \to 0} \frac{e^x - e^\sin x}{x - \sin x}`


\[\lim_{x \to 0} \frac{3^{2 + x} - 9}{x}\]


\[\lim_{x \to 0} \frac{a^x - a^{- x}}{x}\]


\[\lim_{x \to \pi/2} \frac{2^{- \cos x} - 1}{x\left( x - \frac{\pi}{2} \right)}\]


\[\lim_{x \to \infty} \left\{ \frac{x^2 + 2x + 3}{2 x^2 + x + 5} \right\}^\frac{3x - 2}{3x + 2}\]


\[\lim_{x \to 1} \left\{ \frac{x^3 + 2 x^2 + x + 1}{x^2 + 2x + 3} \right\}^\frac{1 - \cos \left( x - 1 \right)}{\left( x - 1 \right)^2}\]


\[\lim_{x \to \infty} \left\{ \frac{3 x^2 + 1}{4 x^2 - 1} \right\}^\frac{x^3}{1 + x}\]


Let f(x) be a polynomial of degree 4 having extreme values at x = 1 and x = 2. If `lim_(x rightarrow 0) ((f(x))/x^2 + 1)` = 3 then f(–1) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×