English

Lim X → 4 2 − √ X 4 − X - Mathematics

Advertisements
Advertisements

Question

\[\lim_{x \to 4} \frac{2 - \sqrt{x}}{4 - x}\]

Solution

\[\lim_{x \to 4} \left[ \frac{2 - \sqrt{x}}{4 - x} \right]\]

=  \[\lim_{x \to 4} \left[ \frac{2 - \sqrt{x}}{2 - \left( \sqrt{x} \right)^2} \right]\]

= \[\lim_{x \to 4} \left[ \frac{\left( 2 - \sqrt{x} \right)}{\left( 2 - \sqrt{x} \right)\left( 2 + \sqrt{x} \right)} \right]\] 

= \[\frac{1}{2 + \sqrt{4}}\]

= \[\frac{1}{2 + 2}\] 

=  \[\frac{1}{4}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.4 [Page 29]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.4 | Q 23 | Page 29

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find `lim_(x -> 0)` f(x) and `lim_(x -> 1)` f(x) where f(x) = `{(2x + 3, x <= 0),(3(x+1), x > 0):}`


Find `lim_(x -> 1)` f(x), where `f(x) = {(x^2 -1, x <= 1), (-x^2 -1, x > 1):}`


If the function f(x) satisfies `lim_(x -> 1) (f(x) - 2)/(x^2 - 1) = pi`, evaluate `lim_(x -> 1) f(x)`.


\[\lim_{x \to 0} \frac{\sqrt{1 + x + x^2} - 1}{x}\]


\[\lim_{x \to 0} \frac{2x}{\sqrt{a + x} - \sqrt{a - x}}\] 


\[\lim_{x \to 2} \frac{\sqrt{3 - x} - 1}{2 - x}\] 


\[\lim_{x \to 0} \frac{x}{\sqrt{1 + x} - \sqrt{1 - x}}\] 


\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x^2 - 1}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x}\] 


\[\lim_{x \to 2} \frac{\sqrt{x^2 + 1} - \sqrt{5}}{x - 2}\] 


\[\lim_{x \to 7} \frac{4 - \sqrt{9 + x}}{1 - \sqrt{8 - x}}\] 


\[\lim_{x \to 2} \frac{\sqrt{1 + 4x} - \sqrt{5 + 2x}}{x - 2}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{x}\] 


\[\lim_{x \to a} \frac{x - a}{\sqrt{x} - \sqrt{a}}\]


\[\lim_{x \to 1} \frac{\sqrt{3 + x} - \sqrt{5 - x}}{x^2 - 1}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 + x}}{\sqrt{1 + x^3} - \sqrt{1 + x}}\] 


\[\lim_{h \to 0} \frac{\sqrt{x + h} - \sqrt{x}}{h}, x \neq 0\] 


\[\lim_{x \to \sqrt{2}} \frac{\sqrt{3 + 2x} - \left( \sqrt{2} + 1 \right)}{x^2 - 2}\] 


\[\lim_{x \to 0} \frac{a^x + a^{- x} - 2}{x^2}\]


\[\lim_{x \to 0} \frac{a^{mx} - 1}{b^{nx} - 1}, n \neq 0\]


\[\lim_{x \to \infty} \left( a^{1/x} - 1 \right)x\]


\[\lim_{x \to 0} \frac{e\sin x - 1}{x}\] 


\[\lim_{x \to 0} \frac{\log \left( 2 + x \right) + \log 0 . 5}{x}\]


\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{\log \left( 1 + x \right)}\] 


\[\lim_{x \to 5} \frac{e^x - e^5}{x - 5}\]


\[\lim_{x \to 0} \frac{e^{x + 2} - e^2}{x}\] 


\[\lim_{x \to 0} \frac{e^{3 + x} - \sin x - e^3}{x}\] 


\[\lim_{x \to 0} \frac{e^{bx} - e^{ax}}{x} \text{ where } 0 < a < b\] 


`\lim_{x \to 0} \frac{e^x - e^\sin x}{x - \sin x}`


\[\lim_{x \to 0} \frac{x\left( e^x - 1 \right)}{1 - \cos x}\]


\[\lim_{x \to \infty} \left\{ \frac{x^2 + 2x + 3}{2 x^2 + x + 5} \right\}^\frac{3x - 2}{3x + 2}\]


\[\lim_{x \to 0} \left\{ \frac{e^x + e^{- x} - 2}{x^2} \right\}^{1/ x^2}\]


\[\lim_{x \to 0} \left\{ \frac{e^x + e^{- x} - 2}{x^2} \right\}^{1/ x^2}\]


\[\lim_{x \to a} \left\{ \frac{\sin x}{\sin a} \right\}^\frac{1}{x - a}\]


Write the value of \[\lim_{n \to \infty} \frac{n! + \left( n + 1 \right)!}{\left( n + 1 \right)! + \left( n + 2 \right)!} .\]


Write the value of \[\lim_{n \to \infty} \frac{1 + 2 + 3 + . . . + n}{n^2} .\]


Evaluate: `lim_(x -> 2) (x^2 - 4)/(sqrt(3x - 2) - sqrt(x + 2))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×