English

Lim X → √ 2 √ 3 + 2 X − ( √ 2 + 1 ) X 2 − 2 - Mathematics

Advertisements
Advertisements

Question

\[\lim_{x \to \sqrt{2}} \frac{\sqrt{3 + 2x} - \left( \sqrt{2} + 1 \right)}{x^2 - 2}\] 

Solution

\[\lim_{x \to \sqrt{2}} \left[ \frac{\sqrt{3 + 2x} - \left( \sqrt{2} + 1 \right)}{x^2 - 2} \right]\] 

= \[\lim_{x \to \sqrt{2}} \left[ \frac{\sqrt{3 + 2x} - \sqrt{\left( \sqrt{2} + 1 \right)^2}}{\left( x - \sqrt{2} \right)\left( x + \sqrt{2} \right)} \right]\] 

= \[\lim_{x \to \sqrt{2}} \left[ \frac{\sqrt{3 + 2x} - \sqrt{2 + 1 + 2\sqrt{2}}}{\left( x - \sqrt{2} \right)\left( x + \sqrt{2} \right)} \right]\]

= \[\lim_{x \to \sqrt{2}} \left[ \frac{\left( \sqrt{3 + 2x} - \sqrt{3 + 2\sqrt{2}} \right)}{\left( x - \sqrt{2} \right)\left( x + \sqrt{2} \right)} \right]\] 

Rationalising the numerator: 

\[\lim_{x \to \sqrt{2}} \left[ \frac{\left( \sqrt{3 + 2x} - \sqrt{3 + 2\sqrt{2}} \right)\left( \sqrt{3 + 2x} + \sqrt{3 + 2\sqrt{2}} \right)}{\left( x - \sqrt{2} \right)\left( x + \sqrt{2} \right)\left( \sqrt{3 + 2x} + \sqrt{3 + 2\sqrt{2}} \right)} \right]\] 

=  \[\lim_{x \to \sqrt{2}} \left[ \frac{\left( 3 + 2x \right) - \left( 3 + 2\sqrt{2} \right)}{\left( x - \sqrt{2} \right)\left( x + \sqrt{2} \right)\left( \sqrt{3 + 2x} + \sqrt{3 + 2\sqrt{2}} \right)} \right]\] 

= \[\lim_{x \to \sqrt{2}} \left[ \frac{2\left( x - \sqrt{2} \right)}{\left( x - \sqrt{2} \right)\left( x + \sqrt{2} \right)\left( \sqrt{3 + 2x} + \sqrt{3 + 2\sqrt{2}} \right)} \right]\] 

=\[\frac{2}{\left( \sqrt{2} + \sqrt{2} \right)\left( \sqrt{3 + 2\sqrt{2}} + \sqrt{3 + 2\sqrt{2}} \right)}\] 

= \[\frac{2}{\left( 2\sqrt{2} \right)\left( 2\sqrt{3 + 2\sqrt{2}} \right)}\] 


= \[\frac{1}{2\sqrt{2}\left( \sqrt{3 + 2\sqrt{2}} \right)}\]

= \[\frac{1}{2\sqrt{2}\sqrt{\left( \sqrt{2} + 1 \right)^2}}\] 

= \[\frac{1}{2\sqrt{2}\left( \sqrt{2} + 1 \right)} \times \frac{\sqrt{2} - 1}{\sqrt{2} - 1}\]

= \[\frac{\sqrt{2} - 1}{2\sqrt{2}\left( 2 - 1 \right)}\]

=\[\frac{\sqrt{2} - 1}{2\sqrt{2}}\] 

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.4 [Page 29]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.4 | Q 34 | Page 29

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\lim_{x \to 0} \frac{\sqrt{a^2 + x^2} - a}{x^2}\] 


\[\lim_{x \to 2} \frac{\sqrt{3 - x} - 1}{2 - x}\] 


\[\lim_{x \to 0} \frac{x}{\sqrt{1 + x} - \sqrt{1 - x}}\] 


\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x - 1}\] 


\[\lim_{x \to 1} \frac{x - 1}{\sqrt{x^2 + 3 - 2}}\] 


\[\lim_{x \to 0} \frac{\sqrt{a + x} - \sqrt{a}}{x\sqrt{a^2 + ax}}\]


\[\lim_{x \to 2} \frac{\sqrt{1 + 4x} - \sqrt{5 + 2x}}{x - 2}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{x}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + 3x} - \sqrt{1 - 3x}}{x}\]


\[\lim_{x \to 0} \frac{\sqrt{2 - x} - \sqrt{2 + x}}{x}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 + x}}{\sqrt{1 + x^3} - \sqrt{1 + x}}\] 


\[\lim_{x \to \sqrt{6}} \frac{\sqrt{5 + 2x} - \left( \sqrt{3} + \sqrt{2} \right)}{x^2 - 6}\] 

 


\[\lim_{x \to 0} \frac{5^x - 1}{\sqrt{4 + x} - 2}\]


\[\lim_{x \to 0} \frac{\log \left( 1 + x \right)}{3^x - 1}\]


\[\lim_{x \to 0} \frac{a^x + b^x - 2}{x}\]


\[\lim_{x \to 0} \frac{9^x - 2 . 6^x + 4^x}{x^2}\] 


\[\lim_{x \to 0} \frac{a^x + b^ x - c^x - d^x}{x}\]


\[\lim_{x \to 0} \frac{e^x - 1 + \sin x}{x}\]


\[\lim_{x \to 0} \frac{\sin 2x}{e^x - 1}\] 


\[\lim_{x \to 0} \frac{e\sin x - 1}{x}\] 


\[\lim_{x \to 0} \frac{e^{2x} - e^x}{\sin 2x}\]


\[\lim_{x \to a} \frac{\log x - \log a}{x - a}\] 


\[\lim_{x \to 0} \frac{e^x - x - 1}{2}\] 


\[\lim_{x \to 0} \frac{e^{3x} - e^{2x}}{x}\] 


`\lim_{x \to 0} \frac{e^x - e^\sin x}{x - \sin x}`


\[\lim_{x \to 0} \frac{3^{2 + x} - 9}{x}\]


\[\lim_{x \to 1} \left\{ \frac{x^3 + 2 x^2 + x + 1}{x^2 + 2x + 3} \right\}^\frac{1 - \cos \left( x - 1 \right)}{\left( x - 1 \right)^2}\]


Write the value of \[\lim_{x \to - \infty} \left( 3x + \sqrt{9 x^2 - x} \right) .\]


Write the value of \[\lim_{x \to \pi/2} \frac{2x - \pi}{\cos x} .\] 


Let f(x) be a polynomial of degree 4 having extreme values at x = 1 and x = 2. If `lim_(x rightarrow 0) ((f(x))/x^2 + 1)` = 3 then f(–1) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×