Advertisements
Advertisements
Question
\[\lim_{x \to \sqrt{6}} \frac{\sqrt{5 + 2x} - \left( \sqrt{3} + \sqrt{2} \right)}{x^2 - 6}\]
Solution
\[\lim_{x \to \sqrt{6}} \left[ \frac{\sqrt{5 + 2x} - \left( \sqrt{3} + \sqrt{2} \right)}{x^2 - 6} \right]\]
= \[\lim_{x \to \sqrt{6}} \left[ \frac{\sqrt{5 + 2x} - \sqrt{\left( \sqrt{3} + \sqrt{2} \right)^2}}{x^2 - \left( \sqrt{6} \right)^2} \right]\]
= \[\lim_{x \to \sqrt{6}} \left[ \frac{\sqrt{5 + 2x} - \sqrt{3 + 2 + 2\sqrt{6}}}{\left( x - \sqrt{6} \right)\left( x + \sqrt{6} \right)} \right]\]
= \[\lim_{x \to \sqrt{6}} \left[ \frac{\sqrt{5 + 2x} - \sqrt{5 + 2\sqrt{6}}}{\left( x - \sqrt{6} \right)\left( x + \sqrt{6} \right)} \right]\]
Rationalising the numerator:
\[\lim_{x \to \sqrt{6}} \left[ \frac{\left( \sqrt{5 + 2x} - \sqrt{5 + 2\sqrt{6}} \right)\left( \sqrt{5 + 2x} + \sqrt{5 + 2\sqrt{6}} \right)}{\left( x - \sqrt{6} \right)\left( x + \sqrt{6} \right)\left( \sqrt{5 + 2x} + \sqrt{5 + 2\sqrt{6}} \right)} \right]\]
= \[\lim_{x \to \sqrt{6}} \left[ \frac{\left( 5 + 2x \right) - \left( 5 + 2\sqrt{6} \right)}{\left( x - \sqrt{6} \right)\left( x + \sqrt{6} \right)\left( \sqrt{5 + 2x} + \sqrt{5 + 2\sqrt{6}} \right)} \right]\]
= \[\lim_{x \to \sqrt{6}} \left[ \frac{2\left( x - \sqrt{6} \right)}{\left( x - \sqrt{6} \right)\left( x + \sqrt{6} \right)\left( \sqrt{5 + 2x} + \sqrt{5 + 2\sqrt{6}} \right)} \right]\]
= \[\frac{2}{\left( \sqrt{6} + \sqrt{6} \right)\left( \sqrt{5 + 2\sqrt{6}} + \sqrt{5 + 2\sqrt{6}} \right)}\]
= \[\frac{1}{2\sqrt{6}\left( \sqrt{\left( \sqrt{3} + \sqrt{2} \right)^2} \right)}\]
= \[\frac{1}{2\sqrt{6}\left( \sqrt{3} + \sqrt{2} \right)}\]
= \[\frac{1}{2\sqrt{6}\left( \sqrt{3} + \sqrt{2} \right)} \times \frac{\left( \sqrt{3} - \sqrt{2} \right)}{\left( \sqrt{3} - \sqrt{2} \right)}\]
= \[\frac{\sqrt{3} - \sqrt{2}}{2\sqrt{6}\left( 3 - 2 \right)}\]
= \[\frac{\sqrt{3} - \sqrt{2}}{2\sqrt{6}}\]
APPEARS IN
RELATED QUESTIONS
Find `lim_(x -> 0)` f(x) and `lim_(x -> 1)` f(x) where f(x) = `{(2x + 3, x <= 0),(3(x+1), x > 0):}`
Find `lim_(x -> 1)` f(x), where `f(x) = {(x^2 -1, x <= 1), (-x^2 -1, x > 1):}`
\[\lim_{x \to 0} \frac{2x}{\sqrt{a + x} - \sqrt{a - x}}\]
\[\lim_{x \to 0} \frac{\sqrt{a^2 + x^2} - a}{x^2}\]
\[\lim_{x \to 3} \frac{x - 3}{\sqrt{x - 2} - \sqrt{4 - x}}\]
\[\lim_{x \to 1} \frac{x - 1}{\sqrt{x^2 + 3 - 2}}\]
\[\lim_{x \to 3} \frac{\sqrt{x + 3} - \sqrt{6}}{x^2 - 9}\]
\[\lim_{x \to 2} \frac{\sqrt{x^2 + 1} - \sqrt{5}}{x - 2}\]
\[\lim_{x \to 0} \frac{\sqrt{a + x} - \sqrt{a}}{x\sqrt{a^2 + ax}}\]
\[\lim_{x \to 5} \frac{x - 5}{\sqrt{6x - 5} - \sqrt{4x + 5}}\]
\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x^3 - 1}\]
\[\lim_{x \to 1} \frac{\sqrt{3 + x} - \sqrt{5 - x}}{x^2 - 1}\]
\[\lim_{x \to 0} \frac{\sqrt{2 - x} - \sqrt{2 + x}}{x}\]
\[\lim_{x \to 1} \frac{\sqrt{3 + x} - \sqrt{5 - x}}{x^2 - 1}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 + x}}{\sqrt{1 + x^3} - \sqrt{1 + x}}\]
\[\lim_{h \to 0} \frac{\sqrt{x + h} - \sqrt{x}}{h}, x \neq 0\]
\[\lim_{x \to 0} \frac{\log \left( 1 + x \right)}{3^x - 1}\]
\[\lim_{x \to 0} \frac{8^x - 4^x - 2^x + 1}{x^2}\]
\[\lim_{x \to 2} \frac{x - 2}{\log_a \left( x - 1 \right)}\]
\[\lim_{x \to 0} \frac{e^x - 1 + \sin x}{x}\]
\[\lim_{x \to 0} \frac{\sin 2x}{e^x - 1}\]
\[\lim_{x \to a} \frac{\log x - \log a}{x - a}\]
\[\lim_{x \to 0} \frac{\log \left( 2 + x \right) + \log 0 . 5}{x}\]
\[\lim_{x \to 0} \frac{\log \left| 1 + x^3 \right|}{\sin^3 x}\]
\[\lim_{x \to 0} \frac{e^{x + 2} - e^2}{x}\]
`\lim_{x \to \pi/2} \frac{e^\cos x - 1}{\cos x}`
\[\lim_{x \to 0} \frac{e^x - x - 1}{2}\]
`\lim_{x \to 0} \frac{e^x - e^\sin x}{x - \sin x}`
\[\lim_{x \to \infty} \left\{ \frac{x^2 + 2x + 3}{2 x^2 + x + 5} \right\}^\frac{3x - 2}{3x + 2}\]
\[\lim_{x \to 0} \frac{\sin x}{\sqrt{1 + x} - 1} .\]
Write the value of \[\lim_{x \to \pi/2} \frac{2x - \pi}{\cos x} .\]
Evaluate: `lim_(x -> 2) (x^2 - 4)/(sqrt(3x - 2) - sqrt(x + 2))`
Let f(x) be a polynomial of degree 4 having extreme values at x = 1 and x = 2. If `lim_(x rightarrow 0) ((f(x))/x^2 + 1)` = 3 then f(–1) is equal to ______.