English

Lim X → 5 X − 5 √ 6 X − 5 − √ 4 X + 5 - Mathematics

Advertisements
Advertisements

Question

\[\lim_{x \to 5} \frac{x - 5}{\sqrt{6x - 5} - \sqrt{4x + 5}}\] 

Solution

\[\lim_{x \to 5} \left[ \frac{x - 5}{\sqrt{6x - 5} - \sqrt{4x + 5}} \right]\] It is of the form \[\frac{0}{0}\] 

Rationalising the denominator: 

\[\lim_{x \to 5} \left[ \frac{\left( x - 5 \right) \left( \sqrt{6x - 5} + \sqrt{4x + 5} \right)}{\left( \sqrt{6x - 5} - \sqrt{4x + 5} \right) \left( \sqrt{6x - 5} + \sqrt{4x + 5} \right)} \right]\] 

=  \[\lim_{x \to 5} \left[ \frac{\left( x - 5 \right) \left( \sqrt{6x - 5} + \sqrt{4x + 5} \right)}{\left( 6x - 5 \right) - \left( 4x + 5 \right)} \right]\] 

=  \[\lim_{x \to 5} \left[ \frac{\left( x - 5 \right) \left( \sqrt{6x - 5} + \sqrt{4x + 5} \right)}{2x - 10} \right]\] 

=\[\lim_{x \to 5} \left[ \frac{\left( x - 5 \right)\left( \sqrt{6x - 5} + \sqrt{4x + 5} \right)}{2\left( x - 5 \right)} \right]\] 

=  \[\frac{\sqrt{6 \times 5 - 5} + \sqrt{4 \times 5 + 5}}{2}\] 

= \[\frac{5 + 5}{2}\] 

= 5

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.4 [Page 28]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.4 | Q 17 | Page 28

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Let a1, a2,..., an be fixed real numbers and define a function f ( x) = ( x − a1 ) ( x − a2 )...( x − an ).

What is `lim_(x -> a_1) f(x)` ? For some a ≠ a1, a2, ..., an, compute `lim_(x -> a) f(x)`


\[\lim_{x \to 0} \frac{2x}{\sqrt{a + x} - \sqrt{a - x}}\] 


\[\lim_{x \to 3} \frac{x - 3}{\sqrt{x - 2} - \sqrt{4 - x}}\] 


\[\lim_{x \to 0} \frac{x}{\sqrt{1 + x} - \sqrt{1 - x}}\] 


\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x - 1}\] 


\[\lim_{x \to 1} \frac{x - 1}{\sqrt{x^2 + 3 - 2}}\] 


\[\lim_{x \to 3} \frac{\sqrt{x + 3} - \sqrt{6}}{x^2 - 9}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x}\] 


\[\lim_{x \to 2} \frac{x - 2}{\sqrt{x} - \sqrt{2}}\] 


\[\lim_{x \to 7} \frac{4 - \sqrt{9 + x}}{1 - \sqrt{8 - x}}\] 


\[\lim_{x \to 0} \frac{\sqrt{a + x} - \sqrt{a}}{x\sqrt{a^2 + ax}}\]


\[\lim_{x \to 1} \frac{\sqrt{3 + x} - \sqrt{5 - x}}{x^2 - 1}\] 


\[\lim_{x \to 1} \frac{\sqrt{3 + x} - \sqrt{5 - x}}{x^2 - 1}\] 


\[\lim_{h \to 0} \frac{\sqrt{x + h} - \sqrt{x}}{h}, x \neq 0\] 


\[\lim_{x \to \sqrt{10}} \frac{\sqrt{7 + 2x} - \left( \sqrt{5} + \sqrt{2} \right)}{x^2 - 10}\] 


\[\lim_{x \to 0} \frac{a^x + a^{- x} - 2}{x^2}\]


\[\lim_{x \to 0} \frac{8^x - 4^x - 2^x + 1}{x^2}\]


\[\lim_{x \to 0} \frac{5^x + 3^x + 2^x - 3}{x}\]


\[\lim_{x \to 0} \frac{a^x + b^ x - c^x - d^x}{x}\]


\[\lim_{x \to 0} \frac{e^x - 1 + \sin x}{x}\]


\[\lim_{x \to 0} \frac{\sin 2x}{e^x - 1}\] 


\[\lim_{x \to 0} \frac{x\left( 2^x - 1 \right)}{1 - \cos x}\] 


`\lim_{x \to \pi/2} \frac{a^\cot x - a^\cos x}{\cot x - \cos x}`


\[\lim_{x \to 0} \frac{e^x - 1}{\sqrt{1 - \cos x}}\]


\[\lim_{x \to 5} \frac{e^x - e^5}{x - 5}\]


`\lim_{x \to \pi/2} \frac{e^\cos x - 1}{\cos x}`


\[\lim_{x \to 0} \frac{e^{3 + x} - \sin x - e^3}{x}\] 


`\lim_{x \to 0} \frac{e^\tan x - 1}{\tan x}`


\[\lim_{x \to 0} \frac{a^x - a^{- x}}{x}\]


\[\lim_{x \to \infty} \left\{ \frac{3 x^2 + 1}{4 x^2 - 1} \right\}^\frac{x^3}{1 + x}\]


\[\lim_{x \to 0} \left\{ \frac{e^x + e^{- x} - 2}{x^2} \right\}^{1/ x^2}\]


\[\lim_{x \to 0} \frac{\sin x}{\sqrt{1 + x} - 1} .\] 


Write the value of \[\lim_{x \to - \infty} \left( 3x + \sqrt{9 x^2 - x} \right) .\]


Write the value of \[\lim_{n \to \infty} \frac{n! + \left( n + 1 \right)!}{\left( n + 1 \right)! + \left( n + 2 \right)!} .\]


Write the value of \[\lim_{n \to \infty} \frac{1 + 2 + 3 + . . . + n}{n^2} .\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×