Advertisements
Advertisements
Question
\[\lim_{x \to 0} \frac{e^x - 1}{\sqrt{1 - \cos x}}\]
Solution
\[\lim_{x \to 0} \left[ \frac{e^x - 1}{\sqrt{1 - \cos x}} \right]\]
\[\text{ Rationalising the denominator, we get }: \]
\[ = \lim_{x \to 0} \left[ \frac{\left( e^x - 1 \right)}{\sqrt{1 - \cos x}} \times \frac{\sqrt{1 + \cos x}}{\sqrt{1 + \cos x}} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\left( e^x - 1 \right) \left( \sqrt{1 + \cos x} \right)}{\sqrt{1 - \cos^2 x}} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\left( e^x - 1 \right) \sqrt{1 + \cos x}}{\left| \sin x \right|} \right]\]
Dividing numerator and the denominator by x, we get:
\[\text{ Left hand limit }: \]
\[ \lim_{x \to 0^-} \left[ \left( \frac{e^x - 1}{x} \right) \times \frac{\sqrt{1 + \cos x}}{\left( \frac{\left| \sin x \right|}{x} \right)} \right]\]
\[ = \lim_{x \to 0^-} \left[ \left( \frac{e^x - 1}{x} \right) \times \frac{\sqrt{1 + \cos x}}{\left( \frac{- \sin x}{x} \right)} \right]\]
\[ = - \frac{1 \times \sqrt{2}}{1}\]
\[ = - \sqrt{2}\]
\[\text{ Right hand limit }: \]
\[ \lim_{x \to 0^+} \left[ \left( \frac{e^x - 1}{x} \right) \times \frac{\sqrt{1 + \cos x}}{\frac{\left| \sin x \right|}{x}} \right]\]
\[ = \lim_{x \to 0^+} \left[ \left( \frac{e^x - 1}{x} \right) \times \frac{\sqrt{1 + \cos x}}{\frac{\sin x}{x}} \right]\]
\[ = 1 \times \frac{\sqrt{2}}{1}\]
\[ = \sqrt{2}\]
Left hand limit ≠ Right hand limit
Thus, limit does not exist.
APPEARS IN
RELATED QUESTIONS
Evaluate `lim_(x -> 0) f(x)` where `f(x) = { (|x|/x, x != 0),(0, x = 0):}`
Find `lim_(x -> 0)` f(x), where `f(x) = {(x/|x|, x != 0),(0, x = 0):}`
Let a1, a2,..., an be fixed real numbers and define a function f ( x) = ( x − a1 ) ( x − a2 )...( x − an ).
What is `lim_(x -> a_1) f(x)` ? For some a ≠ a1, a2, ..., an, compute `lim_(x -> a) f(x)`
If f(x) = `{(|x| + 1,x < 0), (0, x = 0),(|x| -1, x > 0):}`
For what value (s) of a does `lim_(x -> a)` f(x) exists?
\[\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 - x}}{2x}\]
\[\lim_{x \to 2} \frac{\sqrt{3 - x} - 1}{2 - x}\]
\[\lim_{x \to 3} \frac{\sqrt{x + 3} - \sqrt{6}}{x^2 - 9}\]
\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x^2 - 1}\]
\[\lim_{x \to 2} \frac{\sqrt{x^2 + 1} - \sqrt{5}}{x - 2}\]
\[\lim_{x \to 0} \frac{\sqrt{a + x} - \sqrt{a}}{x\sqrt{a^2 + ax}}\]
\[\lim_{x \to 5} \frac{x - 5}{\sqrt{6x - 5} - \sqrt{4x + 5}}\]
\[\lim_{x \to 4} \frac{2 - \sqrt{x}}{4 - x}\]
\[\lim_{x \to a} \frac{x - a}{\sqrt{x} - \sqrt{a}}\]
\[\lim_{x \to 1} \frac{\sqrt{3 + x} - \sqrt{5 - x}}{x^2 - 1}\]
\[\lim_{x \to 1} \frac{ x^2 - \sqrt{x}}{\sqrt{x} - 1}\]
\[\lim_{x \to 0} \frac{a^x + a^{- x} - 2}{x^2}\]
\[\lim_{x \to 0} \frac{8^x - 4^x - 2^x + 1}{x^2}\]
\[\lim_{x \to 0} \frac{a^x + b^x + c^x - 3}{x}\]
\[\lim_{x \to 0} \frac{5^x + 3^x + 2^x - 3}{x}\]
\[\lim_{x \to \infty} \left( a^{1/x} - 1 \right)x\]
\[\lim_{x \to 0} \frac{e^x - 1 + \sin x}{x}\]
\[\lim_{x \to a} \frac{\log x - \log a}{x - a}\]
\[\lim_{x \to 0} \frac{\log \left( a + x \right) - \log \left( a - x \right)}{x}\]
\[\lim_{x \to 0} \frac{\log \left( 2 + x \right) + \log 0 . 5}{x}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{\log \left( 1 + x \right)}\]
\[\lim_{x \to 5} \frac{e^x - e^5}{x - 5}\]
\[\lim_{x \to 0} \frac{e^{x + 2} - e^2}{x}\]
\[\lim_{x \to 0} \frac{e^{3 + x} - \sin x - e^3}{x}\]
\[\lim_{x \to 0} \frac{e^x - x - 1}{2}\]
\[\lim_{x \to 0} \frac{e^{bx} - e^{ax}}{x} \text{ where } 0 < a < b\]
\[\lim_{x \to \infty} \left\{ \frac{x^2 + 2x + 3}{2 x^2 + x + 5} \right\}^\frac{3x - 2}{3x + 2}\]
\[\lim_{x \to 1} \left\{ \frac{x^3 + 2 x^2 + x + 1}{x^2 + 2x + 3} \right\}^\frac{1 - \cos \left( x - 1 \right)}{\left( x - 1 \right)^2}\]
\[\lim_{x \to a} \left\{ \frac{\sin x}{\sin a} \right\}^\frac{1}{x - a}\]
Write the value of \[\lim_{x \to - \infty} \left( 3x + \sqrt{9 x^2 - x} \right) .\]
Let f(x) be a polynomial of degree 4 having extreme values at x = 1 and x = 2. If `lim_(x rightarrow 0) ((f(x))/x^2 + 1)` = 3 then f(–1) is equal to ______.