Advertisements
Advertisements
प्रश्न
\[\lim_{x \to 0} \frac{e^x - 1}{\sqrt{1 - \cos x}}\]
उत्तर
\[\lim_{x \to 0} \left[ \frac{e^x - 1}{\sqrt{1 - \cos x}} \right]\]
\[\text{ Rationalising the denominator, we get }: \]
\[ = \lim_{x \to 0} \left[ \frac{\left( e^x - 1 \right)}{\sqrt{1 - \cos x}} \times \frac{\sqrt{1 + \cos x}}{\sqrt{1 + \cos x}} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\left( e^x - 1 \right) \left( \sqrt{1 + \cos x} \right)}{\sqrt{1 - \cos^2 x}} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\left( e^x - 1 \right) \sqrt{1 + \cos x}}{\left| \sin x \right|} \right]\]
Dividing numerator and the denominator by x, we get:
\[\text{ Left hand limit }: \]
\[ \lim_{x \to 0^-} \left[ \left( \frac{e^x - 1}{x} \right) \times \frac{\sqrt{1 + \cos x}}{\left( \frac{\left| \sin x \right|}{x} \right)} \right]\]
\[ = \lim_{x \to 0^-} \left[ \left( \frac{e^x - 1}{x} \right) \times \frac{\sqrt{1 + \cos x}}{\left( \frac{- \sin x}{x} \right)} \right]\]
\[ = - \frac{1 \times \sqrt{2}}{1}\]
\[ = - \sqrt{2}\]
\[\text{ Right hand limit }: \]
\[ \lim_{x \to 0^+} \left[ \left( \frac{e^x - 1}{x} \right) \times \frac{\sqrt{1 + \cos x}}{\frac{\left| \sin x \right|}{x}} \right]\]
\[ = \lim_{x \to 0^+} \left[ \left( \frac{e^x - 1}{x} \right) \times \frac{\sqrt{1 + \cos x}}{\frac{\sin x}{x}} \right]\]
\[ = 1 \times \frac{\sqrt{2}}{1}\]
\[ = \sqrt{2}\]
Left hand limit ≠ Right hand limit
Thus, limit does not exist.
APPEARS IN
संबंधित प्रश्न
Find `lim_(x -> 1)` f(x), where `f(x) = {(x^2 -1, x <= 1), (-x^2 -1, x > 1):}`
Evaluate `lim_(x -> 0) f(x)` where `f(x) = { (|x|/x, x != 0),(0, x = 0):}`
Find `lim_(x -> 0)` f(x), where `f(x) = {(x/|x|, x != 0),(0, x = 0):}`
Let a1, a2,..., an be fixed real numbers and define a function f ( x) = ( x − a1 ) ( x − a2 )...( x − an ).
What is `lim_(x -> a_1) f(x)` ? For some a ≠ a1, a2, ..., an, compute `lim_(x -> a) f(x)`
If f(x) = `{(|x| + 1,x < 0), (0, x = 0),(|x| -1, x > 0):}`
For what value (s) of a does `lim_(x -> a)` f(x) exists?
If the function f(x) satisfies `lim_(x -> 1) (f(x) - 2)/(x^2 - 1) = pi`, evaluate `lim_(x -> 1) f(x)`.
\[\lim_{x \to 2} \frac{\sqrt{3 - x} - 1}{2 - x}\]
\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x^2 - 1}\]
\[\lim_{x \to 7} \frac{4 - \sqrt{9 + x}}{1 - \sqrt{8 - x}}\]
\[\lim_{x \to 0} \frac{\sqrt{a + x} - \sqrt{a}}{x\sqrt{a^2 + ax}}\]
\[\lim_{x \to 5} \frac{x - 5}{\sqrt{6x - 5} - \sqrt{4x + 5}}\]
\[\lim_{x \to 1} \frac{\sqrt{3 + x} - \sqrt{5 - x}}{x^2 - 1}\]
\[\lim_{x \to 0} \frac{\sqrt{2 - x} - \sqrt{2 + x}}{x}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 + x}}{\sqrt{1 + x^3} - \sqrt{1 + x}}\]
\[\lim_{x \to \sqrt{6}} \frac{\sqrt{5 + 2x} - \left( \sqrt{3} + \sqrt{2} \right)}{x^2 - 6}\]
\[\lim_{x \to 0} \frac{5^x - 1}{\sqrt{4 + x} - 2}\]
\[\lim_{x \to 0} \frac{9^x - 2 . 6^x + 4^x}{x^2}\]
\[\lim_{x \to 0} \frac{8^x - 4^x - 2^x + 1}{x^2}\]
\[\lim_{x \to 0} \frac{a^{mx} - b^{nx}}{\sin kx}\]
\[\lim_{x \to 0} \frac{e^x - 1 + \sin x}{x}\]
\[\lim_{x \to 0} \frac{e\sin x - 1}{x}\]
\[\lim_{x \to a} \frac{\log x - \log a}{x - a}\]
\[\lim_{x \to 0} \frac{\log \left( 2 + x \right) + \log 0 . 5}{x}\]
\[\lim_{x \to 5} \frac{e^x - e^5}{x - 5}\]
`\lim_{x \to \pi/2} \frac{e^\cos x - 1}{\cos x}`
\[\lim_{x \to 0} \frac{e^{3 + x} - \sin x - e^3}{x}\]
\[\lim_{x \to 0} \frac{e^x - x - 1}{2}\]
\[\lim_{x \to 0} \frac{e^{3x} - e^{2x}}{x}\]
\[\lim_{x \to 0} \frac{e^{bx} - e^{ax}}{x} \text{ where } 0 < a < b\]
\[\lim_{x \to \pi/2} \frac{2^{- \cos x} - 1}{x\left( x - \frac{\pi}{2} \right)}\]
\[\lim_{x \to a} \left\{ \frac{\sin x}{\sin a} \right\}^\frac{1}{x - a}\]
Write the value of \[\lim_{x \to - \infty} \left( 3x + \sqrt{9 x^2 - x} \right) .\]
Let f(x) be a polynomial of degree 4 having extreme values at x = 1 and x = 2. If `lim_(x rightarrow 0) ((f(x))/x^2 + 1)` = 3 then f(–1) is equal to ______.