हिंदी

If f(x) = {|x|+ 1x<00x=0|x|-1x>0 For what value (s) of a does limx→a f(x) exists? - Mathematics

Advertisements
Advertisements

प्रश्न

If f(x) = `{(|x| +  1,x < 0), (0, x = 0),(|x| -1, x > 0):}`

For what value (s) of a does `lim_(x -> a)`  f(x) exists?

योग

उत्तर

Given function:

f(x)  = `{(|"x"| +  1,"x" < 0), (0, "x" = 0),(|"x"| -1, "x" > 0):}`

(i) at x = 0,

`lim_("x" → 0^-) f("x") = lim_("x"  → 0^-) (1 - "x") = 1`

`lim_("x" → 0^+) f("x") = lim_("x"  → 0^+) ("x" - 1) = -1`

`lim_("x" → 0^-) f("x") ≠ lim_("x" → 0^+) f("x")`

`lim_("x" → 1) f("x")` does not exist at x = 0.

(ii) When a < 0

`lim_("x" → "a"^-) f("x")  = lim_("x" → "a"^-) (1 - "x") = 1 - "a"`

`lim_("x" → "a"^+) f("x")  = lim_("x" → "a"^+) (1 - "x") = 1 - "a"`

∴ `lim_("x" → "a"^-) f("x")  = lim_("x" → "a"^+) f("x")`

That is, `lim_("x" → "a") f("x") = 1 - "a"`

(iii) When a > 0

`lim_("x" → "a"^-) f("x")  = lim_("x" → "a"^-) ("x" - 1) = "a" - 1`

`lim_("x" → "a"^+) f("x")  = lim_("x" → "a"^+) ("x" - 1) = "a" - 1`

∴ `lim_("x" → "a"^-) f("x")  = lim_("x" → "a"^+) f("x")`

Hence, `lim_("x" → "a") f("x") = "a" - 1`

Thus,

When, a < 0, `lim_("x" → "a") f("x") = 1 - "a"`

When, a > 0 `lim_("x" → "a") f("x") = "a" - 1`

Hence, there exists `lim_("x" → "a")` f(x) for all a, a ≠ 0.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Limits and Derivatives - Exercise 13.1 [पृष्ठ ३०३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 13 Limits and Derivatives
Exercise 13.1 | Q 30 | पृष्ठ ३०३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find `lim_(x -> 0)` f(x) and `lim_(x -> 1)` f(x) where f(x) = `{(2x + 3, x <= 0),(3(x+1), x > 0):}`


Find `lim_(x -> 1)` f(x), where `f(x) = {(x^2 -1, x <= 1), (-x^2 -1, x > 1):}`


Let a1, a2,..., an be fixed real numbers and define a function f ( x) = ( x − a1 ) ( x − a2 )...( x − an ).

What is `lim_(x -> a_1) f(x)` ? For some a ≠ a1, a2, ..., an, compute `lim_(x -> a) f(x)`


\[\lim_{x \to 0} \frac{\sqrt{a^2 + x^2} - a}{x^2}\] 


\[\lim_{x \to 2} \frac{\sqrt{3 - x} - 1}{2 - x}\] 


\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x^2 - 1}\] 


\[\lim_{x \to 2} \frac{\sqrt{x^2 + 1} - \sqrt{5}}{x - 2}\] 


\[\lim_{x \to 2} \frac{x - 2}{\sqrt{x} - \sqrt{2}}\] 


\[\lim_{x \to 5} \frac{x - 5}{\sqrt{6x - 5} - \sqrt{4x + 5}}\] 


\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x^3 - 1}\] 


\[\lim_{x \to 1} \frac{\sqrt{3 + x} - \sqrt{5 - x}}{x^2 - 1}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x + x^2} - \sqrt{x + 1}}{2 x^2}\] 


\[\lim_{x \to a} \frac{x - a}{\sqrt{x} - \sqrt{a}}\]


\[\lim_{x \to 0} \frac{\sqrt{2 - x} - \sqrt{2 + x}}{x}\] 


\[\lim_{x \to 1} \frac{ x^2 - \sqrt{x}}{\sqrt{x} - 1}\]


\[\lim_{x \to \sqrt{10}} \frac{\sqrt{7 + 2x} - \left( \sqrt{5} + \sqrt{2} \right)}{x^2 - 10}\] 


\[\lim_{x \to 0} \frac{5^x - 1}{\sqrt{4 + x} - 2}\]


\[\lim_{x \to 0} \frac{a^{mx} - 1}{b^{nx} - 1}, n \neq 0\]


\[\lim_{x \to 0} \frac{9^x - 2 . 6^x + 4^x}{x^2}\] 


\[\lim_{x \to 2} \frac{x - 2}{\log_a \left( x - 1 \right)}\]


\[\lim_{x \to \infty} \left( a^{1/x} - 1 \right)x\]


\[\lim_{x \to 0} \frac{e^{2x} - e^x}{\sin 2x}\]


\[\lim_{x \to 0} \frac{x\left( 2^x - 1 \right)}{1 - \cos x}\] 


\[\lim_{x \to 0} \frac{\log \left| 1 + x^3 \right|}{\sin^3 x}\] 

 


`\lim_{x \to \pi/2} \frac{a^\cot x - a^\cos x}{\cot x - \cos x}`


\[\lim_{x \to 5} \frac{e^x - e^5}{x - 5}\]


\[\lim_{x \to 0} \frac{e^{3x} - e^{2x}}{x}\] 


\[\lim_{x \to 0} \frac{e^{bx} - e^{ax}}{x} \text{ where } 0 < a < b\] 


`\lim_{x \to 0} \frac{e^\tan x - 1}{x}`


\[\lim_{x \to 0} \frac{3^{2 + x} - 9}{x}\]


\[\lim_{x \to a} \left\{ \frac{\sin x}{\sin a} \right\}^\frac{1}{x - a}\]


\[\lim_{x \to \infty} \left\{ \frac{3 x^2 + 1}{4 x^2 - 1} \right\}^\frac{x^3}{1 + x}\]


\[\lim_{x \to 0} \frac{\sin x}{\sqrt{1 + x} - 1} .\] 


Write the value of \[\lim_{n \to \infty} \frac{n! + \left( n + 1 \right)!}{\left( n + 1 \right)! + \left( n + 2 \right)!} .\]


Write the value of \[\lim_{x \to \pi/2} \frac{2x - \pi}{\cos x} .\] 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×