Advertisements
Advertisements
प्रश्न
If f(x) = `{(|x| + 1,x < 0), (0, x = 0),(|x| -1, x > 0):}`
For what value (s) of a does `lim_(x -> a)` f(x) exists?
उत्तर
Given function:
f(x) = `{(|"x"| + 1,"x" < 0), (0, "x" = 0),(|"x"| -1, "x" > 0):}`
(i) at x = 0,
`lim_("x" → 0^-) f("x") = lim_("x" → 0^-) (1 - "x") = 1`
`lim_("x" → 0^+) f("x") = lim_("x" → 0^+) ("x" - 1) = -1`
`lim_("x" → 0^-) f("x") ≠ lim_("x" → 0^+) f("x")`
`lim_("x" → 1) f("x")` does not exist at x = 0.
(ii) When a < 0
`lim_("x" → "a"^-) f("x") = lim_("x" → "a"^-) (1 - "x") = 1 - "a"`
`lim_("x" → "a"^+) f("x") = lim_("x" → "a"^+) (1 - "x") = 1 - "a"`
∴ `lim_("x" → "a"^-) f("x") = lim_("x" → "a"^+) f("x")`
That is, `lim_("x" → "a") f("x") = 1 - "a"`
(iii) When a > 0
`lim_("x" → "a"^-) f("x") = lim_("x" → "a"^-) ("x" - 1) = "a" - 1`
`lim_("x" → "a"^+) f("x") = lim_("x" → "a"^+) ("x" - 1) = "a" - 1`
∴ `lim_("x" → "a"^-) f("x") = lim_("x" → "a"^+) f("x")`
Hence, `lim_("x" → "a") f("x") = "a" - 1`
Thus,
When, a < 0, `lim_("x" → "a") f("x") = 1 - "a"`
When, a > 0 `lim_("x" → "a") f("x") = "a" - 1`
Hence, there exists `lim_("x" → "a")` f(x) for all a, a ≠ 0.
APPEARS IN
संबंधित प्रश्न
Find `lim_(x -> 0)` f(x) and `lim_(x -> 1)` f(x) where f(x) = `{(2x + 3, x <= 0),(3(x+1), x > 0):}`
Evaluate `lim_(x -> 0) f(x)` where `f(x) = { (|x|/x, x != 0),(0, x = 0):}`
Find `lim_(x -> 0)` f(x), where `f(x) = {(x/|x|, x != 0),(0, x = 0):}`
If the function f(x) satisfies `lim_(x -> 1) (f(x) - 2)/(x^2 - 1) = pi`, evaluate `lim_(x -> 1) f(x)`.
\[\lim_{x \to 0} \frac{2x}{\sqrt{a + x} - \sqrt{a - x}}\]
\[\lim_{x \to 2} \frac{\sqrt{3 - x} - 1}{2 - x}\]
\[\lim_{x \to 0} \frac{x}{\sqrt{1 + x} - \sqrt{1 - x}}\]
\[\lim_{x \to 3} \frac{\sqrt{x + 3} - \sqrt{6}}{x^2 - 9}\]
\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x^2 - 1}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x}\]
\[\lim_{x \to 2} \frac{\sqrt{1 + 4x} - \sqrt{5 + 2x}}{x - 2}\]
\[\lim_{x \to 0} \frac{\sqrt{2 - x} - \sqrt{2 + x}}{x}\]
\[\lim_{x \to 1} \frac{ x^2 - \sqrt{x}}{\sqrt{x} - 1}\]
\[\lim_{x \to \sqrt{10}} \frac{\sqrt{7 + 2x} - \left( \sqrt{5} + \sqrt{2} \right)}{x^2 - 10}\]
\[\lim_{x \to \sqrt{2}} \frac{\sqrt{3 + 2x} - \left( \sqrt{2} + 1 \right)}{x^2 - 2}\]
\[\lim_{x \to 0} \frac{a^x + a^{- x} - 2}{x^2}\]
\[\lim_{x \to 0} \frac{a^x + b^x - 2}{x}\]
\[\lim_{x \to 2} \frac{x - 2}{\log_a \left( x - 1 \right)}\]
\[\lim_{x \to 0} \frac{a^x + b^ x - c^x - d^x}{x}\]
\[\lim_{x \to 0} \frac{e\sin x - 1}{x}\]
\[\lim_{x \to a} \frac{\log x - \log a}{x - a}\]
`\lim_{x \to \pi/2} \frac{a^\cot x - a^\cos x}{\cot x - \cos x}`
\[\lim_{x \to 0} \frac{e^{x + 2} - e^2}{x}\]
\[\lim_{x \to 0} \frac{e^{3x} - e^{2x}}{x}\]
\[\lim_{x \to 0} \frac{e^{bx} - e^{ax}}{x} \text{ where } 0 < a < b\]
\[\lim_{x \to 0} \frac{3^{2 + x} - 9}{x}\]
\[\lim_{x \to 0} \frac{x\left( e^x - 1 \right)}{1 - \cos x}\]
\[\lim_{x \to \infty} \left\{ \frac{x^2 + 2x + 3}{2 x^2 + x + 5} \right\}^\frac{3x - 2}{3x + 2}\]
\[\lim_{x \to 0} \left\{ \frac{e^x + e^{- x} - 2}{x^2} \right\}^{1/ x^2}\]
\[\lim_{x \to 0} \left\{ \frac{e^x + e^{- x} - 2}{x^2} \right\}^{1/ x^2}\]
\[\lim_{x \to 0} \frac{\sin x}{\sqrt{1 + x} - 1} .\]
Write the value of \[\lim_{x \to - \infty} \left( 3x + \sqrt{9 x^2 - x} \right) .\]
Write the value of \[\lim_{x \to \pi/2} \frac{2x - \pi}{\cos x} .\]