मराठी

Let a1, a2,..., an be fixed real numbers and define a function f ( x) = ( x − a1 ) ( x − a2 )...( x − an ). What is limx→a1f(x) ? For some a ≠ a1, a2, ..., an, compute limx→af(x) - Mathematics

Advertisements
Advertisements

प्रश्न

Let a1, a2,..., an be fixed real numbers and define a function f ( x) = ( x − a1 ) ( x − a2 )...( x − an ).

What is limxa1f(x) ? For some a ≠ a1, a2, ..., an, compute limxaf(x)

बेरीज

उत्तर

To factor (x − a1),

If x → a1, x − a1 → 0

limx-a1(x-a2)=(a1-a2)

 f(x) = (x – a1) (x – a2) ….. (x – an)

limx-a1f(x)=limx-a1 (x – a1) (x – a2) ….. (x – an)

= limx-a1(x-a1)limx-a1(x-a2)(x-a3)......(x-an)

= 0 × (a1 − a2) (a1 − a3) .......(a − an) 0

When, a ≠ a1, a2 ........, an

As soon as x → a, x → a1 → a − a1

a − a1 is neither zero nor undefined.

Thus, the values ​​of the second factor will be a − a2, a − a3 ....., a - an.

Hence, limx-af(x)=limx-a (x – a1) (x – a2) ….. (x – an)

= (a – a1) (a – a2) ….. (a – an)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Limits and Derivatives - Exercise 13.1 [पृष्ठ ३०३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 13 Limits and Derivatives
Exercise 13.1 | Q 29 | पृष्ठ ३०३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.