मराठी

Lim X → 2 X − 2 Log a ( X − 1 ) - Mathematics

Advertisements
Advertisements

प्रश्न

\[\lim_{x \to 2} \frac{x - 2}{\log_a \left( x - 1 \right)}\]

उत्तर

\[\lim_{x \to 2} \left[ \frac{x - 2}{\log_a \left( x - 1 \right)} \right]\]

Let x = 2 + h

 x → 2
∴ h → 0

\[= \lim_{h \to 0} \left[ \frac{\left( 2 + h \right) - 2}{\frac{\log \left\{ \left( 2 + h \right) - 1 \right\}}{\log a}} \right]\]
\[ = \log a \lim_{h \to 0} \left[ \frac{h}{\log \left( 1 + h \right)} \right]\]
\[ = \log a \times 1\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 29: Limits - Exercise 29.1 [पृष्ठ ७१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 29 Limits
Exercise 29.1 | Q 10 | पृष्ठ ७१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate `lim_(x -> 0) f(x)` where `f(x) = { (|x|/x, x != 0),(0, x = 0):}`


If f(x) = `{(|x| +  1,x < 0), (0, x = 0),(|x| -1, x > 0):}`

For what value (s) of a does `lim_(x -> a)`  f(x) exists?


If the function f(x) satisfies `lim_(x -> 1) (f(x) - 2)/(x^2 - 1) = pi`, evaluate `lim_(x -> 1) f(x)`.


if `f(x) = { (mx^2 + n, x < 0),(nx + m, 0<= x <= 1),(nx^3 + m, x > 1):}`

For what integers m and n does `lim_(x-> 0) f(x)` and `lim_(x -> 1) f(x)` exist?


\[\lim_{x \to 0} \frac{2x}{\sqrt{a + x} - \sqrt{a - x}}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 - x}}{2x}\]


\[\lim_{x \to 3} \frac{\sqrt{x + 3} - \sqrt{6}}{x^2 - 9}\] 


\[\lim_{x \to 2} \frac{\sqrt{x^2 + 1} - \sqrt{5}}{x - 2}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{x}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + 3x} - \sqrt{1 - 3x}}{x}\]


\[\lim_{h \to 0} \frac{\sqrt{x + h} - \sqrt{x}}{h}, x \neq 0\] 


\[\lim_{x \to \sqrt{6}} \frac{\sqrt{5 + 2x} - \left( \sqrt{3} + \sqrt{2} \right)}{x^2 - 6}\] 

 


\[\lim_{x \to 0} \frac{\log \left( 1 + x \right)}{3^x - 1}\]


\[\lim_{x \to 0} \frac{a^x + a^{- x} - 2}{x^2}\]


\[\lim_{x \to 0} \frac{8^x - 4^x - 2^x + 1}{x^2}\]


\[\lim_{x \to a} \frac{\log x - \log a}{x - a}\] 


\[\lim_{x \to 0} \frac{\log \left( a + x \right) - \log \left( a - x \right)}{x}\]


\[\lim_{x \to 0} \frac{\log \left( 2 + x \right) + \log 0 . 5}{x}\]


`\lim_{x \to \pi/2} \frac{a^\cot x - a^\cos x}{\cot x - \cos x}`


\[\lim_{x \to 0} \frac{e^{x + 2} - e^2}{x}\] 


`\lim_{x \to \pi/2} \frac{e^\cos x - 1}{\cos x}`


\[\lim_{x \to 0} \frac{e^{3 + x} - \sin x - e^3}{x}\] 


\[\lim_{x \to 0} \frac{e^x - x - 1}{2}\] 


\[\lim_{x \to 0} \frac{e^{3x} - e^{2x}}{x}\] 


\[\lim_{x \to 0} \frac{e^{bx} - e^{ax}}{x} \text{ where } 0 < a < b\] 


`\lim_{x \to 0} \frac{e^x - e^\sin x}{x - \sin x}`


\[\lim_{x \to \infty} \left\{ \frac{x^2 + 2x + 3}{2 x^2 + x + 5} \right\}^\frac{3x - 2}{3x + 2}\]


Write the value of \[\lim_{x \to - \infty} \left( 3x + \sqrt{9 x^2 - x} \right) .\]


Write the value of \[\lim_{x \to \pi/2} \frac{2x - \pi}{\cos x} .\] 


Evaluate: `lim_(h -> 0) (sqrt(x + h) - sqrt(x))/h`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×