मराठी

Lim X → π 2 E Cos X − 1 Cos X - Mathematics

Advertisements
Advertisements

प्रश्न

`\lim_{x \to \pi/2} \frac{e^\cos x - 1}{\cos x}`

उत्तर

\[\lim_{x \to \frac{\pi}{2}} \left[ \frac{e^{cos x} - 1}{\cos x} \right]\]
\[\text{ If } x \to \frac{\pi}{2}, \text{ then } \cos x \to 0 . \]
\[\text{ Let } y = \cos x\]
\[ = \lim_{y \to 0} \left[ \frac{e^y - 1}{y} \right]\]
\[ = 1\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 29: Limits - Exercise 29.1 [पृष्ठ ७२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 29 Limits
Exercise 29.1 | Q 32 | पृष्ठ ७२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If f(x) = `{(|x| +  1,x < 0), (0, x = 0),(|x| -1, x > 0):}`

For what value (s) of a does `lim_(x -> a)`  f(x) exists?


If the function f(x) satisfies `lim_(x -> 1) (f(x) - 2)/(x^2 - 1) = pi`, evaluate `lim_(x -> 1) f(x)`.


\[\lim_{x \to 3} \frac{x - 3}{\sqrt{x - 2} - \sqrt{4 - x}}\] 


\[\lim_{x \to 1} \frac{x - 1}{\sqrt{x^2 + 3 - 2}}\] 


\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x^2 - 1}\] 


\[\lim_{x \to 2} \frac{\sqrt{x^2 + 1} - \sqrt{5}}{x - 2}\] 


\[\lim_{x \to 2} \frac{x - 2}{\sqrt{x} - \sqrt{2}}\] 


\[\lim_{x \to 7} \frac{4 - \sqrt{9 + x}}{1 - \sqrt{8 - x}}\] 


\[\lim_{x \to 5} \frac{x - 5}{\sqrt{6x - 5} - \sqrt{4x + 5}}\] 


\[\lim_{x \to 2} \frac{\sqrt{1 + 4x} - \sqrt{5 + 2x}}{x - 2}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{x}\] 


\[\lim_{x \to a} \frac{x - a}{\sqrt{x} - \sqrt{a}}\]


\[\lim_{x \to 0} \frac{\sqrt{2 - x} - \sqrt{2 + x}}{x}\] 


\[\lim_{x \to 1} \frac{\sqrt{3 + x} - \sqrt{5 - x}}{x^2 - 1}\] 


\[\lim_{x \to \sqrt{10}} \frac{\sqrt{7 + 2x} - \left( \sqrt{5} + \sqrt{2} \right)}{x^2 - 10}\] 


\[\lim_{x \to \sqrt{2}} \frac{\sqrt{3 + 2x} - \left( \sqrt{2} + 1 \right)}{x^2 - 2}\] 


\[\lim_{x \to 0} \frac{a^x + a^{- x} - 2}{x^2}\]


\[\lim_{x \to 0} \frac{5^x + 3^x + 2^x - 3}{x}\]


\[\lim_{x \to 0} \frac{a^{mx} - b^{nx}}{\sin kx}\]


\[\lim_{x \to 0} \frac{e\sin x - 1}{x}\] 


\[\lim_{x \to a} \frac{\log x - \log a}{x - a}\] 


\[\lim_{x \to 0} \frac{\log \left( a + x \right) - \log \left( a - x \right)}{x}\]


\[\lim_{x \to 0} \frac{\log \left( 2 + x \right) + \log 0 . 5}{x}\]


\[\lim_{x \to 0} \frac{\log \left| 1 + x^3 \right|}{\sin^3 x}\] 

 


\[\lim_{x \to 5} \frac{e^x - e^5}{x - 5}\]


\[\lim_{x \to 0} \frac{e^{x + 2} - e^2}{x}\] 


`\lim_{x \to 0} \frac{e^\tan x - 1}{\tan x}`


`\lim_{x \to 0} \frac{e^\tan x - 1}{x}`


\[\lim_{x \to 1} \left\{ \frac{x^3 + 2 x^2 + x + 1}{x^2 + 2x + 3} \right\}^\frac{1 - \cos \left( x - 1 \right)}{\left( x - 1 \right)^2}\]


\[\lim_{x \to 0} \left\{ \frac{e^x + e^{- x} - 2}{x^2} \right\}^{1/ x^2}\]


\[\lim_{x \to 0} \frac{\sin x}{\sqrt{1 + x} - 1} .\] 


Write the value of \[\lim_{n \to \infty} \frac{n! + \left( n + 1 \right)!}{\left( n + 1 \right)! + \left( n + 2 \right)!} .\]


Write the value of \[\lim_{n \to \infty} \frac{1 + 2 + 3 + . . . + n}{n^2} .\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×